Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2014, Article ID 450691, 12 pages
http://dx.doi.org/10.1155/2014/450691
Research Article

Impact of Preceding El Niño and the Indian Ocean Dipole on the Southern China Precipitation in Early Summer

1National Marine Data and Information Service, Tianjin 300171, China
2State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, 46 Zhongguancun Southern Street, Haidian, Beijing 100081, China
3Tianjin Meteorological Observatory, Tianjin 300074, China

Received 31 October 2013; Accepted 22 January 2014; Published 11 March 2014

Academic Editor: Anthony R. Lupo

Copyright © 2014 Yan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Wang, B. Wang, and J.-H. Oh, “Impact of the preceding EL Niño on the East Asian summer atmosphere circulation,” Journal of the Meteorological Society of Japan, vol. 79, no. 1, pp. 575–588, 2001. View at Google Scholar · View at Scopus
  2. B. Wang, R. Wu, and X. Fu, “Pacific-East Asian teleconnection: how does ENSO affect East Asian climate?” Journal of Climate, vol. 13, no. 9, pp. 1517–1536, 2000. View at Google Scholar · View at Scopus
  3. N. H. Saji, B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, “A dipole mode in the tropical Indian Ocean,” Nature, vol. 401, no. 6751, pp. 360–363, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. P. J. Webster, A. M. Moore, J. P. Loschnigg, and R. R. Leben, “Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98,” Nature, vol. 401, no. 6751, pp. 356–360, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Xiang, W. Yu, T. Li, and B. Wang, “The critical role of the boreal summer mean state in the development of the IOD,” Geophysical Research Letters, vol. 38, no. 2, Article ID L02710, 2011. View at Publisher · View at Google Scholar
  6. A. F. Bracco, F. Kucharski, F. Molteni, W. Hazeleger, and C. Severijns, “A recipe for simulating the interannual variability of the Asian summer monsoon and its relation with ENSO,” Climate Dynamics, vol. 28, no. 5, pp. 441–460, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Ashok, Z. Guan, and T. Yamagata, “Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO,” Geophysical Research Letters, vol. 28, no. 23, pp. 4499–4502, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Ashok, Z. Guan, N. H. Saji, and T. Yamagata, “Individual and combined influences of ENSO and Indian Ocean dipole on the Indian summer monsoon,” Journal of Climate, vol. 17, no. 16, pp. 3141–3155, 2004. View at Google Scholar
  9. N. H. Saji and Y. Yamagata, “Structure of SST and surface wind variability during Indian Ocean dipole mode events: COADS observations,” Journal of Climate, vol. 16, no. 16, pp. 2735–2751, 2003. View at Google Scholar
  10. J.-J. Luo, R. Zhang, S. K. Behera et al., “Interaction between El Niño and extreme Indian Ocean dipole,” Journal of Climate, vol. 23, no. 3, pp. 726–742, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. J. J. Luo, W. Sasaki, and Y. Masumoto, “Indian Ocean warming modulates Pacific climate change,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 46, pp. 18701–18706, 2012. View at Publisher · View at Google Scholar
  12. N. H. Saji and T. Yamagata, “Possible impacts of Indian Ocean dipole mode events on global climate,” Climate Research, vol. 25, no. 2, pp. 151–169, 2003. View at Google Scholar · View at Scopus
  13. J.-J. Luo, S. Behera, Y. Masumoto, H. Sakuma, and T. Yamagata, “Successful prediction of the consecutive IOD in 2006 and 2007,” Geophysical Research Letters, vol. 35, no. 14, Article ID L14S02, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. F. A. Schott, S. P. Xie, and J. McCreary, “Indian Ocean circulation and climate variability,” Reviews of Geophysics, vol. 47, no. 1, Article ID RG1002, 2009. View at Publisher · View at Google Scholar
  15. C. Y. Li and M. Q. Mu, “The influence of the Indian Ocean dipole on atmospheric circulation and climate,” Advances in Atmospheric Sciences, vol. 18, no. 5, pp. 831–843, 2001. View at Google Scholar · View at Scopus
  16. Z. Guan and T. Yamagata, “The unusual summer of 1994 in East Asia: IOD teleconnections,” Geophysical Research Letters, vol. 30, no. 10, pp. 1544–1548, 2003. View at Google Scholar · View at Scopus
  17. M. Hashizume, L. F. Chaves, and N. Minakawa, “Indian Ocean dipole drives malaria resurgence in East African highlands,” Scientific Reports, vol. 2, article 269, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Kistler, E. Kalnay, W. Collins et al., “The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation,” Bulletin of the American Meteorological Society, vol. 82, no. 2, pp. 247–268, 2001. View at Google Scholar · View at Scopus
  19. H. Yang, X. L. Jia, and C. Y. Li, “The tropical Pacific-Indian Ocean temperature anomaly mode and its effect,” Chinese Science Bulletin, vol. 51, no. 23, pp. 2878–2884, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Kaplan, M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, “Analyses of global sea surface temperature 1856–1991,” Journal of Geophysical Research, vol. 103, no. C9, pp. 18567–18589, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. W. D. Collins, P. J. Rasch, B. A. Boville et al., “Description of NCAR community atmosphere model (CAM3.0),” Tech. Rep. NCAR/TN-464+STR, National Center for Atmospheric Research, Boulder, Colo, USA, 2004. View at Google Scholar
  22. A. Cherchi and A. Navarra, “Influence of ENSO and of the Indian Ocean dipole on the Indian summer monsoon variability,” Climate Dynamics, vol. 41, no. 1, pp. 81–103, 2013. View at Publisher · View at Google Scholar
  23. Y. Wang, “Effects of blocking anticyclones in Eurasia in the rainy season (Meiyu/Baiu season),” Journal Meteorological Society of Japan, vol. 70, no. 2, pp. 929–951, 1992. View at Google Scholar
  24. Q. Y. Zhang and S. Y. Tao, “Influence of Asian mid-high latitude circulation on East Asian summer rainfall,” Acta Meteorologica Sinica, vol. 56, no. 2, pp. 199–211, 1998. View at Google Scholar
  25. T. Matsuno, “Quasi-geostrophic motions in the equatorial area,” Jounary of Meteorological Society of Japan, vol. 44, no. 1, pp. 25–43, 1966. View at Google Scholar
  26. A. E. Gill, “Some simple solutions for heat-induced tropical circulation,” Quarterly Journal of the Royal Meteorological Society, vol. 106, no. 449, pp. 447–462, 1980. View at Publisher · View at Google Scholar · View at Scopus