Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2014 (2014), Article ID 484120, 12 pages
http://dx.doi.org/10.1155/2014/484120
Research Article

Ensemble Hydrometeorological Forecasts Using WRF Hourly QPF and TopModel for a Middle Watershed

1Institute of Meteorology of Paraná, (SIMEPAR), Rua Francisco H. dos Santos 210, 81531-980 Curitiba, PR, Brazil
2Department of Atmospheric Sciences, University of São Paulo, 05508-090 São Paulo, SP, Brazil

Received 13 September 2013; Revised 24 March 2014; Accepted 25 March 2014; Published 14 May 2014

Academic Editor: Eugene Rozanov

Copyright © 2014 Leonardo Calvetti and Augusto José Pereira Filho. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Quantitative precipitation forecasts (QPFs) were obtained from ensembles of the weather and research forecasting (WRF) model for the Iguaçu river watershed (IRW) in southern Brazil. Thirty-two rainfall events between 2005 and 2010 were simulated with ten configurations of WRF. These rainfall events range from local to synoptic scale convection and caused a significant increase in the level of the Iguaçu river. In the average, the ensembles yielded up to 20% better skill than single WRF forecasts for the events analyzed. WRF ensembles also allow estimating the predictability through the dispersion of the forecasts providing relevant information for decision-making. Phase errors of ensemble forecasts are larger than amplitude errors. More complex microphysics parameterizations yielded better QPFs with smaller phase errors. QPFs were fed to IRW hydrological model with similar phase and amplitude errors. It is suggested that lagged QPFs might reduce phase errors.