Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2014, Article ID 498020, 11 pages
http://dx.doi.org/10.1155/2014/498020
Research Article

A Probabilistic Rain Diagnostic Model Based on Cyclone Statistical Analysis

1Department of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece
2Department of Civil Engineering, McMaster University, Hamilton, ON, Canada L8S 4L7

Received 13 March 2014; Accepted 23 May 2014; Published 11 June 2014

Academic Editor: Hiroyuki Hashiguchi

Copyright © 2014 V. Iordanidou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jansa, P. Buzzi A, and P. Arbogast, MEDEX, Cyclones That Produce High Impact Weather in the Mediterranean, 2001.
  2. M. Reale and P. Lionello, “Synoptic climatology of winter intense precipitation events along the Mediterranean coasts,” Natural Hazards and Earth System Sciences, vol. 13, no. 7, pp. 1707–1722, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Lionello, J. Bhend, A. Buzzi et al., “Chapter 6 cyclones in the Mediterranean region: climatology and effects on the environment,” Developments in Earth and Environmental Sciences, vol. 4, pp. 325–372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. I. F. Trigo, T. D. Davies, and G. R. Bigg, “Objective climatology of cyclones in the Mediterranean region,” Journal of Climate, vol. 12, no. 6, pp. 1685–1696, 1999. View at Google Scholar · View at Scopus
  5. A. Sanna, P. Lionello, and S. Gualdi, “Coupled atmosphere ocean climate model simulations in the Mediterranean region: effect of a high-resolution marine model on cyclones and precipitation,” Natural Hazards and Earth System Sciences, vol. 13, no. 6, pp. 1567–1577, 2013. View at Publisher · View at Google Scholar
  6. P. Lionello, J. Bhend, A. Buzzi et al., “Chapter 6 cyclones in the Mediterranean region: climatology and effects on the environment,” Developments in Earth and Environmental Sciences, pp. 313–358, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Campins, A. Genovés, M. A. Picornell, and A. Jansà, “Climatology of Mediterranean cyclones using the ERA-40 dataset,” International Journal of Climatology, vol. 31, no. 11, pp. 1596–1614, 2011. View at Google Scholar
  8. M. K. Hawcroft, L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, “How much Northern Hemisphere precipitation is associated with extratropical cyclones?” Geophysical Research Letters, vol. 39, no. 24, Article ID L24809, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. J. L. Catto, C. Jakob, G. Berry, and N. Nicholls, “Relating global precipitation to atmospheric fronts,” Geophysical Research Letters, vol. 39, no. 10, Article ID L10805, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Papritz, S. Pfahl, H. Sodemann, H. Wernli, I. Rudeva, and I. Simmonds, “The role of extratropical cyclones and fronts for Southern Ocean freshwater fluxes,” Journal of Climate. In press.
  11. A. Jansa, A. Genoves, M. A. Picornell, J. Campins, R. Riosalido, and O. Carretero, “Western Mediterranean cyclones and heavy rain. Part 2: statistical approach,” Meteorological Applications, vol. 8, no. 1, pp. 43–56, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. I. F. Trigo, T. D. Davies, and G. R. Bigg, “Decline in Mediterranean rainfall caused by weakening of Mediterranean cyclones,” Geophysical Research Letters, vol. 27, no. 18, pp. 2913–2916, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Maheras, K. Tolika, C. Anagnostopoulou, M. Vafiadis, I. Patrikas, and H. Flocas, “On the relationships between circulation types and changes in rainfall variability in Greece,” International Journal of Climatology, vol. 24, no. 13, pp. 1695–1712, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Lionello and F. Giorgi, “Winter precipitation and cyclones in the Mediterranean region: Future climate scenarios in a regional simulation,” Advances in Geosciences, vol. 12, pp. 153–158, 2007. View at Google Scholar · View at Scopus
  15. U. Neu, M. G. Akperov, N. Bellenbaum et al., “Imilast: a community effort to intercompare extratropical cyclone detection and tracking algorithms,” Bulletin of the American Meteorological Society, vol. 94, no. 4, pp. 529–547, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. U. Ulbrich, G. C. Leckebusch, J. Grieger et al., “Are Greenhouse Gas Signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm?” Meteorologische Zeitschrift, vol. 22, no. 1, pp. 61–68, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Bartholy, R. Pongrácz, and M. Pattantyús-Ábrahám, “Analyzing the genesis, intensity, and tracks of western Mediterranean cyclones,” Theoretical and Applied Climatology, vol. 96, no. 1-2, pp. 133–144, 2008. View at Google Scholar
  18. H. A. Flocas, I. Simmonds, J. Kouroutzoglou et al., “On cyclonic tracks over the Eastern Mediterranean,” Journal of Climate, vol. 23, no. 19, pp. 5243–5257, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. H. A. Flocas, P. Maheras, T. S. Karacostas, I. Patrikas, and C. Anagnostopoulou, “A 40-year climatological study of relative vorticity distribution over the Mediterranean,” International Journal of Climatology, vol. 21, no. 14, pp. 1759–1778, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Ammar, M. El-Metwally, M. Almazroui, and M. M. A. Wahab, “A climatological analysis of Saharan cyclones,” Climate Dynamics. View at Publisher · View at Google Scholar
  21. A. Hannachi, A. Awad, and K. Ammar, “Climatology and classification of Spring Saharan cyclone tracks,” Climate Dynamics, vol. 37, no. 3, pp. 473–491, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. K. M. Nissen, G. C. Leckebusch, J. G. Pinto, D. Renggli, S. Ulbrich, and U. Ulbrich, “Cyclones causing wind storms in the Mediterranean: characteristics, trends and links to large-scale patterns,” Natural Hazards and Earth System Science, vol. 10, no. 7, pp. 1379–1391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Rudeva and S. K. Gulev, “Climatology of cyclone size characteristics and their changes during the cyclone life cycle,” Monthly Weather Review, vol. 135, no. 7, pp. 2568–2587, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Simmonds, “Size changes over the life of sea level cyclones in the NCEP reanalysis,” Monthly Weather Review, vol. 128, no. 12, pp. 4118–4125, 2000. View at Google Scholar · View at Scopus
  25. J. L. Mcbride and E. E. Ebert, “Verification of quantitative precipitation forecasts from operational numerical weather prediction models over Australia,” Weather and Forecasting, vol. 15, no. 1, pp. 103–121, 2000. View at Google Scholar · View at Scopus
  26. M. Vich, R. Romero, and V. Homar, “Ensemble prediction of Mediterranean high-impact events using potential vorticity perturbations. Part II: adjoint-derived sensitivity zones,” Atmospheric Research, vol. 102, no. 3, pp. 311–319, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. A. G. Koutroulis, I. K. Tsanis, and I. N. Daliakopoulos, “Seasonality of floods and their hydrometeorologic characteristics in the island of Crete,” Journal of Hydrology, vol. 394, no. 1-2, pp. 90–100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. G. Koutroulis, M. G. Grillakis, I. K. Tsanis, V. Kotroni, and K. Lagouvardos, “Lightning activity, rainfall and flash flooding-occasional or interrelated events? A case study in the island of Crete,” Natural Hazards and Earth System Science, vol. 12, no. 4, pp. 881–891, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Mouratidis, G. Doxani, M. Nikolaidou, M. Lampiri, F. Sarti, and M. Tsakiri-Strati, “Contribution of geographical information systems and earth observation data to mapping and managing flood events in Greece,” International Journal of Geographical Information Science. In press.
  30. R. J. Murray and I. Simmonds, “A numerical scheme for tracking cyclone centres from digital data. Part I: development and operation of the scheme,” Australian Meteorological Magazine, vol. 39, no. 3, pp. 155–166, 1991. View at Google Scholar · View at Scopus
  31. R. J. Murray and I. Simmonds, “A numerical scheme for tracking cyclone centres from digital data. Part I: development and operation of the scheme,” Australian Meteorological Magazine, vol. 39, no. 3, pp. 155–166, 1991. View at Google Scholar · View at Scopus
  32. P. Hope, K. Keay, M. Pook et al., “A comparison of automated methods of front recognition for climate studies: a case study in Southwest Western Australia,” Monthly Weather Review, vol. 142, pp. 343–363, 2014. View at Google Scholar
  33. E.-P. Lim and I. Simmonds, “Southern hemisphere winter extratropical cyclone characteristics and vertical organization observed with the ERA-40 data in 1979–2001,” Journal of Climate, vol. 20, no. 11, pp. 2675–2690, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. I. Simmonds and K. Keay, “Mean southern hemisphere extratropical cyclone behavior in the 40-year NCEP-NCAR reanalysis,” Journal of Climate, vol. 13, no. 5, pp. 873–885, 2000. View at Google Scholar · View at Scopus
  35. J. Kouroutzoglou, H. A. Flocas, K. Keay, I. Simmonds, and M. Hatzaki, “Climatological aspects of explosive cyclones in the Mediterranean,” International Journal of Climatology, vol. 31, no. 12, pp. 1785–1802, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Kouroutzoglou, H. A. Flocas, K. Keay, I. Simmonds, and M. Hatzaki, “On the vertical structure of Mediterranean explosive cyclones,” Theoretical and Applied Climatology, vol. 110, no. 1-2, pp. 155–176, 2012. View at Publisher · View at Google Scholar · View at Scopus