Table of Contents Author Guidelines Submit a Manuscript
Corrigendum

A corrigendum for this article has been published. To view the corrigendum, please click here.

Advances in Meteorology
Volume 2014, Article ID 596041, 14 pages
http://dx.doi.org/10.1155/2014/596041
Review Article

Airmass Trajectories and Long Range Transport of Pollutants: Review of Wet Deposition Scenario in South Asia

School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India

Received 24 April 2014; Revised 6 June 2014; Accepted 9 June 2014; Published 12 August 2014

Academic Editor: M. Ángeles García

Copyright © 2014 Umesh Kulshrestha and Bablu Kumar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Dutton, The Ceaseless Wind: An Introduction to the Theory of Atmospheric Motion, Dover, New York, NY, USA, 1986.
  2. H. R. Byers, General Meteorology, McGraw-Hill, New York, U.S.A, 4th edition, 1974.
  3. D. J. Thomson and J. D. Wilson, History of Lagrangian Stochastic Models for Turbulent Dispersion, Langrangian Model of the Atmosphere, Geographical Monograph Series 200, American Geophhysical union, 2012.
  4. K. J. Davis, D. H. Lenschow, S. P. Oncley et al., “Role of entrainment in surface-atmosphere interactions over the boreal forest,” Journal of Geophysical Research D, vol. 102, no. 24, pp. 29219–29230, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Seibert, “Inverse modelling with a lagrangian particle dispersion model: application to point releases over limited time intervals in: air pollution modeling and its application,” Journal of Applied Meteorology, vol. 14, pp. 381–389, 2004. View at Google Scholar
  6. A. Eliassen, J. Saltbones, F. Stordal, O. Hov, and I. S. A. Isaksen, “A Lagrangian long-range transport model with atmospheric boundary layer chemistry,” Journal of Applied Meteorology, vol. 21, no. 11, pp. 1645–1661, 1982. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Simpson, “Photochemical model calculations over Europe for two extended summer periods: 1985 and 1989. Model results and comparison with observations,” Atmospheric Environment A, vol. 27, no. 6, pp. 921–943, 1993. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Petterssen, “Weather analysis and forecasting,” pp. 221–223, 1940.
  9. E. F. Danielsen and R. Bleck, “Research in four-dimensional diagnosis of cyclonic storm cloud system,” AFCRL Rep. 67–0617, Bedford, Mass, USA, 1967, Available as, NTIS AD-670 847, from National Technical Information Service, Springfield, Va, USA. View at Google Scholar
  10. H. Rodhe, “A study of the sulfur budget for the atmosphere over Northern Europe,” Tellus, vol. 24, pp. 128–138, 1972. View at Google Scholar
  11. T. D. Fox and J. D. Ludwick, “Lead (Pb) concentrations associated with 1000-MB geostrophic back trajectories at Quillayute, Washington,” Atmospheric Environment, vol. 10, no. 10, pp. 799–803, 1976. View at Publisher · View at Google Scholar · View at Scopus
  12. L. L. Ashbaugh, W. C. Malm, and W. Z. Sadeh, “A residence time probability analysis of sulfur concentrations at Grand Canyon National Park,” Atmospheric Environment, vol. 19, no. 8, pp. 1263–1270, 1985. View at Publisher · View at Google Scholar · View at Scopus
  13. A. V. Polissar, P. K. Hopke, P. Paatero et al., “The aerosol at Barrow, Alaska: long-term trends and source locations,” Atmospheric Environment, vol. 33, no. 16, pp. 2441–2458, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Stohl, “Computation, accuracy and applications of trajectories—a review and bibliography,” Atmospheric Environment, vol. 32, no. 6, pp. 947–966, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. L. Fleming, P. S. Monks, and A. J. Manning, “Review: untangling the influence of air-mass history in interpreting observed atmospheric composition,” Atmospheric Research, vol. 104-105, pp. 1–39, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. B. F. Taubman, J. C. Hains, A. M. Thompson et al., “Aircraft vertical profiles of trace gas and aerosol pollution over the mid-Atlantic United States: Statistics and meteorological cluster analysis,” Journal of Geophysical Research D: Atmospheres, vol. 111, no. 10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Cabello, J. A. G. Orza, V. Galiano, and G. Ruiz, “Influence of meteorological input data on backtrajectory cluster analysis a seven-year study for southeastern Spain,” Advances in Science and Research, vol. 2, pp. 65–70, 2008. View at Google Scholar
  18. S. Pettersen, Weather Analysis and Forecasting: Motion and Motion Systems, vol. 1, McGraw-Hill, 1956.
  19. J. D. Kahl, “A cautionary note on the use of air trajectories in interpreting atmospheric chemistry measurements,” Atmospheric Environment, vol. 27, no. 17-18, pp. 3037–3038, 1993. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Seibert, “Convergence and accuracy of numerical methods for trajectory calculations,” Journal of Applied Meteorology, vol. 32, no. 3, pp. 558–566, 1993. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Isaacson and H. B. Keller, Analysis of Numerical Methods, vol. 541, John Wiley & Sons, New York, NY. USA, 1966. View at MathSciNet
  22. P. Brumer, “Stability concepts in the numerical solution of classical atomic and molecular scattering problems,” Journal of Computational Physics, vol. 14, pp. 391–419, 1974. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  23. J. T. Merrill, “Isentropic air-flow probability analysis,” Journal of Geophysical Research: Atmospheres, vol. 99, pp. 25881–25889, 1994. View at Google Scholar · View at Scopus
  24. A. Stohl, G. Wotawa, P. Seibert, and H. Kromp-Kolb, “Interpolation errors in wind fields as a function of spatial and temporal resolution and their impact on different types of kinematic trajectories,” Journal of Applied Meteorology, vol. 34, no. 10, pp. 2149–2165, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Virkkula, M. Aurela, R. Hillamo et al., “Chemical composition of atmospheric aerosol in the European subarctic: contribution of the Kola Peninsula smelter areas, central Europe, and the Arctic Ocean,” Journal of Geophysical Research D: Atmospheres, vol. 104, no. 19, pp. 23681–23696, 1999. View at Google Scholar · View at Scopus
  26. J. N. Cape, J. Methven, and L. E. Hudson, “The use of trajectory cluster analysis to interpret trace gas measurements at Mace Head, Ireland,” Atmospheric Environment, vol. 34, no. 22, pp. 3651–3663, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. R. R. Draxler and G. D. Rolph, “HYSPLIT ( HYbrid Single-Particle Lagrangian Integrated Trajectory) Model. NOAA Air Resources Laboratory,” Silver Spring, Md, USA, 2003, http://ready.arl.noaa.gov/HYSPLIT.php.
  28. P. Pochanart, H. Akimoto, Y. Kajii, V. M. Potemkin, and T. V. Khodzher, “Regional background ozone and carbon monoxide variations nin remote Siberia/East Asia,” Journal of Geophysical Research D: Atmospheres, vol. 108, no. 1, pp. 1–18, 2003. View at Google Scholar · View at Scopus
  29. B. A. Schichtel, K. A. Gebhart, M. G. Barna, and W. C. Malm, “Association of airmass transport patterns and particulate sulfur concentrations at Big Bend National Park, Texas,” Atmospheric Environment, vol. 40, no. 5, pp. 992–1006, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. A. W. Delcloo and H. de Backer, “Five day 3D back trajectory clusters and trends analysis of the Uccle ozone sounding time series in the lower troposphere (1969–2001),” Atmospheric Environment, vol. 42, no. 19, pp. 4419–4432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Doǧan, G. Güllü, and G. Tuncel, “Sources and source regions effecting the aerosol composition of the Eastern Mediterranean,” Microchemical Journal, vol. 88, no. 2, pp. 142–149, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. O. A. Tarasova, I. A. Senik, M. G. Sosonkin, J. Cui, J. Staehelin, and A. S. H. Prévôt, “Surface ozone at the Caucasian site Kislovodsk High Mountain Station and the Swiss Alpine site Jungfraujoch: data analysis and trends (1990–2006),” Atmospheric Chemistry and Physics, vol. 9, no. 12, pp. 4157–4175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. http://lagrange.empa.ch/lm_traj.html.
  34. H. Riede, P. Jockel, and R. Sander, “Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM,” Geoscience Model Development, vol. 2, pp. 267–280, 2009. View at Publisher · View at Google Scholar
  35. R. P. Shadbolt, E. A. Waller, J. P. Messina, and J. A. Winkler, “Source regions of lower-tropospheric airflow trajectories for the lower peninsula of Michigan: a 40-year air mass climatology,” Journal of Geophysical Research D: Atmospheres, vol. 111, no. 21, Article ID D21117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Riccio, G. Giunta, and E. Chianese, “The application of a trajectory classification procedure to interpret air pollution measurements in the urban area of Naples (Southern Italy),” Science of the Total Environment, vol. 376, no. 1–3, pp. 198–214, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. B. S. K. Reddy, K. R. Kumar, G. Balakrishnaiah et al., “Observational studies on the variations in surface ozone concentration at Anantapur in southern India,” Atmospheric Research, vol. 98, no. 1, pp. 125–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. B. A. Begum, S. K. Biswas, G. G. Pandit et al., “Long-range transport of soil dust and smoke pollution in the South Asian region,” Atmospheric Pollution Research, vol. 2, no. 2, pp. 151–157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. A. H. M. Saadat, Md. M. Rahman, S. M. K. Hasan, and A. T. M. Jahangir Alam, “Travelling and source point identification of some transboundary air pollutants by trajectory analysis in Sathkhira, Bangladesh,” Canadian Chemical Transactions, vol. 1, no. 1, pp. 56–65, 2013. View at Google Scholar
  40. K. B. Budhavant, P. S. P. Rao, P. D. Safai, and K. Ah, “Chemistry of monsoon and post-monsoon rains at a high altitude location, Sinhagad, India,” Aerosol and Air Quality Research, vol. 9, no. 1, pp. 65–79, 2009. View at Google Scholar · View at Scopus
  41. K. B. Budhavant, P. S. P. Rao, P. D. Safai, L. Granat, and H. Rodhe, “Chemical composition of the inorganic fraction of cloud-water at a high altitude station in West India,” Atmospheric Environment, vol. 88, pp. 59–65, 2014. View at Publisher · View at Google Scholar
  42. R. R. Draxler and A. D. Taylor, “Horizontal parameters for long-range transport modeling,” Journal of Applied Meteorology, vol. 21, no. 3, pp. 367–372, 1982. View at Publisher · View at Google Scholar · View at Scopus
  43. J. C. Lin, C. Gerbig, S. C. Wofsy et al., “Measuring fluxes of trace gases at regional scales by Lagrangian observations: application to the CO2 Budget and Rectification Airborne (COBRA) study,” Journal of Geophysical Research: Atmospheres, vol. 109, no. D15, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Wen, J. C. Lin, D. B. Millet, A. F. Stein, and R. R. Draxler, “A backward-time stochastic Lagrangian air quality model,” Atmospheric Environment, vol. 54, pp. 373–386, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. J. L. Moody, J. A. Galusky, and J. N. Galloway, “The use of atmospheric transport pattern recognition techniques in understanding variation in precipitation chemistry,” in Atmospheric Deposition (Proceedings of the Baltimore Symposium, May 1989), IAHS Publ . No. 179, May 1989.
  46. M. Escudero, A. F. Stein, R. R. Draxler et al., “Source apportionment for African dust outbreaks over the Western Mediterranean using the HYSPLIT model,” Atmospheric Research, vol. 99, no. 3-4, pp. 518–527, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Baker, “A cluster analysis of long range air transport pathways and associated pollutant concentrations within the UK,” Atmospheric Environment, vol. 44, no. 4, pp. 563–571, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. K. A. Gebhart, B. A. Schichtel, W. C. Malm, M. G. Barna, M. A. Rodriguez, and J. L. Collett, “Back-trajectory-based source apportionment of airborne sulfur and nitrogen concentrations at Rocky Mountain National Park, Colorado, USA,” Atmospheric Environment, vol. 45, no. 3, pp. 621–633, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. B. de Foy, M. Zavala, N. Bei, and L. T. Molina, “Evaluation of WRF mesoscale simulations and particle trajectory analysis for the MILAGRO field campaign,” Atmospheric Chemistry and Physics, vol. 9, no. 13, pp. 4419–4438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. R. M. Harrison, J. L. Grenfell, J. D. Peak et al., “Influence of airmass back trajectory upon nitrogen compound composition,” Atmospheric Environment, vol. 34, no. 10, pp. 1519–1527, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. T. W. Chan and M. Mozurkewich, “Application of absolute principal component analysis to size distribution data: identification of particle origins,” Atmospheric Chemistry and Physics, vol. 7, no. 3, pp. 887–897, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. L. A. K. Reddy, U. C. Kulshrestha, J. Satyanarayana, M. J. Kulshrestha, and K. K. Moorthy, “Chemical characteristics of PM10 aerosols and airmass trajectories over Bay of Bengal and Arabian Sea during ICARB,” Journal of Earth System Science, vol. 117, no. 1, pp. 345–352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Salvador, B. Artíñano, X. Querol, and A. Alastuey, “A combined analysis of backward trajectories and aerosol chemistry to characterise long-range transport episodes of particulate matter: the Madrid air basin, a case study,” Science of the Total Environment, vol. 390, no. 2-3, pp. 495–506, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Granat, M. Norman, C. Leck, U. C. Kulshrestha, and H. Rodhe, “Wet scavenging of sulfur compounds and other constituents during the Indian Ocean Experiment (INDOEX),” Journal of Geophysical Research D: Atmospheres, vol. 107, no. 19, article 8025, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Satyanarayana, L. A. K. Reddy, M. J. Kulshrestha, R. N. Rao, and U. C. Kulshrestha, “Chemical composition of rain water and influence of airmass trajectories at a rural site in an ecological sensitive area of Western Ghats (India),” Journal of Atmospheric Chemistry, vol. 66, no. 3, pp. 101–116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Dvorská, G. Lammel, and I. Holoubek, “Recent trends of persistent organic pollutants in air in central Europe—air monitoring in combination with air mass trajectory statistics as a tool to study the effectivity of regional chemical policy,” Atmospheric Environment, vol. 43, no. 6, pp. 1280–1287, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. D. W. Tarasick, J. J. Jin, V. E. Fioletov et al., “High-resolution tropospheric ozone fields for INTEX and ARCTAS from IONS ozonesondes,” Journal of Geophysical Research D, vol. 115, no. 20, Article ID D20301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. A. S. Lefohn, H. Wernli, D. Shadwick, S. Limbach, S. J. Oltmans, and M. Shapiro, “The importance of stratospheric-tropospheric transport in affecting surface ozone concentrations in the Western and Northern tier of the United States,” Atmospheric Environment, vol. 45, no. 28, pp. 4845–4857, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. P. D. Tyson, M. Garstang, R. J. Swap, E. V. Browell, R. D. Diab, and A. M. Thompson, “Transport and Vertical structure of ozone and aerosol distributions over southern Africa,” in Biomass Burning and Global Change, J. S. Levine, Ed., pp. 403–421, MIT Press, Cambridge, UK, 1996. View at Google Scholar
  60. K. Ashrafi, M. Shafiepour-Motlagh, A. Aslemand, and S. Ghade, “Dust storm simulation over Iran using HYSPLIT,” Journal of Environmental Health Science and Engineering, vol. 12, no. 1, article 9, 2014. View at Publisher · View at Google Scholar
  61. K. K. Moorthy, A. Saha, B. S. N. Prasad, K. Niranjan, D. Jhurry, and P. S. Pillai, “Aerosol optical depths over peninsular India and adjoining oceans during the INDOEX campaigns: spatial, temporal, and spectral characteristics,” Journal of Geophysical Research D: Atmospheres, vol. 106, no. 22, pp. 28539–28554, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Iqbal and N. T. K. Oanh, “Assessment of acid deposition over Dhaka division using CAMx-MM5 modeling system,” Atmospheric Pollution Research, vol. 2, no. 4, pp. 452–462, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Norman, S. N. Das, A. G. Pillai, L. Granat, and H. Rodhe, “Influence of air mass trajectories on the chemical composition of precipitation in India,” Atmospheric Environment, vol. 35, no. 25, pp. 4223–4235, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. B. Kumar, G. P. Gupta, S. Singh, and U. C. Kulshrestha, “Chemical characterization of snowfall in western Himalayan region of India,” Unpublished data.
  65. F. Li and V. Ramanathan, “Winter to summer monsoon variation of aerosol optical depth over the tropical Indian Ocean,” Journal of Geophysical Research D: Atmospheres, vol. 107, no. 16, pp. 2–13, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. T. N. Krishnamurti, B. Jha, J. Prospero, A. Jayaraman, and V. Ramanathan, “Aerosol and pollutant transport and their impact on radiative forcing over the tropical Indian Ocean during the January-February 1996 pre-INDOEX cruise,” Tellus, vol. 50, no. 5, pp. 521–542, 1998. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Verma, C. Venkataraman, O. Boucher, and S. Ramachandran, “Source evaluation of aerosols measured during the Indian Ocean Experiment using combined chemical transport and back trajectory modeling,” Journal of Geophysical Research D: Atmospheres, vol. 112, no. 11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Das, L. Granat, C. Leck, P. S. Praveen, and H. Rodhe, “Chemical composition of rainwater at Maldives Climate Observatory at Hanimaadhoo (MCOH),” Atmospheric Chemistry and Physics, vol. 11, no. 8, pp. 3743–3755, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. K. Alam, S. Qureshi, and T. Blaschke, “Monitoring spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model,” Atmospheric Environment, vol. 45, no. 27, pp. 4641–4651, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Singh, B. Kumar, G. P. Gupta, and U. C. Kulshrestha, “Signatures of increasing energy demand of past two decades as captured in rain water composition and airmass trajectory analysis at Delhi (India),” Atmospheric Environment. In press.
  71. A. Kumar, S. Tiwari, D. S. Bisht et al., “Aerosol characteristics during the coolest june month over new delhi, Northern India,” International Journal of Remote Sensing, vol. 32, no. 23, pp. 8463–8483, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. LRTAP, http://www.unece.org/env/lrtap.
  73. S. Tiwari, D. M. Chate, D. S. Bisht, M. K. Srivastava, and B. Padmanabhamurty, “Rainwater chemistry in the North Western Himalayan Region, India,” Atmospheric Research, vol. 104-105, pp. 128–138, 2012. View at Publisher · View at Google Scholar · View at Scopus
  74. M. S. Naik, L. T. Khemani, G. A. Momin, P. S. P. Rao, P. D. Safai, and A. G. Pillai, “Chemical composition of fresh snow from Gulmarg, North India,” Environmental Pollution, vol. 87, no. 2, pp. 167–171, 1995. View at Publisher · View at Google Scholar · View at Scopus
  75. D. C. Parashar, L. Granat, U. C. Kulshrestha et al., “Chemical composition of precipitation in India and Nepal-apreliminary report on an Indo-Swedish project on atmospheric chemistry,” Tech. Rep. CM90, IMI, Stockholm University, Stockholm, Sweden, 1996. View at Google Scholar
  76. U. C. Kulshrestha, A. K. Sarkar, S. S. Srivastava, and D. C. Parashar, “Investigation into atmospheric deposition through precipitation studies at New Delhi (India),” Atmospheric Environment, vol. 30, no. 24, pp. 4149–4154, 1996. View at Publisher · View at Google Scholar · View at Scopus
  77. U. C. Kulshrestha, L. Granat, M. Engardt, and H. Rodhe, “Review of precipitation monitoring studies in India—a search for regional patterns,” Atmospheric Environment, vol. 39, no. 38, pp. 7403–7419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. L. T. Khemani, G. A. Momin, P. S. Prakasa Rao, P. D. Safai, G. Singh, and R. K. Kapoor, “Spread of acid rain over India,” Atmospheric Environment, vol. 23, no. 4, pp. 757–762, 1989. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Saxena, S. Sharma, U. C. Kulshrestha, and S. S. Srivastava, “Factors affecting alkaline nature of rain water in Agra (India),” Environmental Pollution, vol. 74, no. 2, pp. 129–138, 1991. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Avila and M. Alarcón, “Relationship between precipitation chemistry and meteorological situations at a rural site in Northeastern Spain,” Atmospheric Environment, vol. 33, no. 11, pp. 1663–1677, 1999. View at Publisher · View at Google Scholar · View at Scopus
  81. R. Das, S. N. Das, and V. N. Misra, “Chemical composition of rainwater and dustfall at Bhubaneswar in the east coast of India,” Atmospheric Environment, vol. 39, no. 32, pp. 5908–5916, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. K. B. Budhavant, P. S. P. Rao, P. D. Safai, and K. Ali, “Influence of local sources on rainwater chemistry over Pune region, India,” Atmospheric Research, vol. 100, no. 1, pp. 121–131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Zhang, S. Wang, F. Wu, X. Yuan, and Y. Zhang, “Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in Southeastern China,” Atmospheric Research, vol. 84, no. 4, pp. 311–322, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. S. C. Kang, P. A. Mayewski, D. H. Qin, S. A. Sneed, J. W. Ren, and D. Q. Zhang, “Seasonal differences in snow chemistry from the vicinity of Mt. Everest, central Himalayas,” Atmospheric Environment, vol. 38, no. 18, pp. 2819–2829, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. K. Yalcin, C. P. Wake, S. Kang, K. J. Kreutz, and S. I. Whitlow, “Seasonal and spatial variability in snow chemistry at Eclipse Icefield, Yukon, Canada,” Annals of Glaciology, vol. 43, pp. 230–238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Marinoni, S. Polesello, C. Smiraglia, and S. Valsecchi, “Chemical composition of freshsnow samples from the southern slope of Mt. Everest region (Khumbu-Himal region, Nepal),” Atmospheric Environment, vol. 35, no. 18, pp. 3183–3190, 2001. View at Publisher · View at Google Scholar · View at Scopus
  87. H. Niu, Y. He, G. Zhu et al., “Environmental implications of the latest snow chemistry from Mt. Yulong, Southeastern Tibetan Plateau,” Quaternary International, vol. 313-314, pp. 168–178, 2013. View at Publisher · View at Google Scholar · View at Scopus
  88. K. J. Kreutz, V. B. Aizen, L. D. Cecil, and C. P. Wake, “Oxygen isotopic and soluble ionic composition of a shallow firn core, Inilchek glacier, central Tien Shan,” Journal of Glaciology, vol. 47, no. 159, pp. 548–554, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. U. C. Kulshrestha, M. J. Kulshrestha, R. Sekar, G. S. R. Sastry, and M. Vairamani, “Chemical characteristics of rainwater at an urban site of south-central India,” Atmospheric Environment, vol. 37, no. 21, pp. 3019–3026, 2003. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Jain, U. C. Kulshrestha, A. K. Sarkar, and D. C. Parashar, “Influence of crustal aerosols on wet deposition at urban and rural sites in India,” Atmospheric Environment, vol. 34, no. 29-30, pp. 5129–5137, 2000. View at Publisher · View at Google Scholar · View at Scopus
  91. G. Zhu, T. Pu, Y. He, P. Shi, and T. Zhang, “Seasonal variations of major ions in fresh snow at Baishui Glacier No. 1, Yulong Mountain, China,” Environmental Earth Sciences, vol. 69, no. 1, pp. 1–10, 2013. View at Publisher · View at Google Scholar · View at Scopus
  92. S. C. Kang, C. P. Wake, D. H. Qin, P. A. Mayewski, and T. D. Yao, “Monsoon and dust signals recorded in Dasuopu glacier, Tibetan Plateau,” Journal of Glaciology, vol. 46, no. 153, pp. 222–226, 2000. View at Publisher · View at Google Scholar · View at Scopus
  93. D. H. Qin, S. G. Hou, D. Q. Zhang et al., “Preliminary results from the chemical records of an 80.4 m ice core recovered from East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya,” Annals of Glaciology, vol. 35, pp. 278–284, 2002. View at Publisher · View at Google Scholar · View at Scopus