Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2014, Article ID 597378, 7 pages
http://dx.doi.org/10.1155/2014/597378
Research Article

Wind Field of a Nonmesocyclone Anticyclonic Tornado Crossing the Hong Kong International Airport

1Center for Severe Weather Research, 1945 Vassar Circle, Boulder, CO 80305, USA
2Hong Kong Observatory, 134A Nathan Road, Hong Kong

Received 19 October 2013; Revised 24 December 2013; Accepted 31 December 2013; Published 2 March 2014

Academic Editor: Sven-Erik Gryning

Copyright © 2014 Karen A. Kosiba et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Wurman, J. M. Straka, and E. N. Rasmussen, “Fine-scale Doppler radar observations of tornadoes,” Science, vol. 272, no. 5269, pp. 1774–1777, 1996. View at Google Scholar · View at Scopus
  2. J. Wurman and S. Gill, “Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado,” Monthly Weather Review, vol. 128, no. 7, pp. 2135–2164, 2000. View at Google Scholar · View at Scopus
  3. H. B. Bluestein, W.-C. Lee, M. Bell, C. C. Weiss, and A. L. Pazmany, “Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part II: tornado-vortex structure,” Monthly Weather Review, vol. 131, no. 12, pp. 2968–2984, 2003. View at Google Scholar
  4. H. B. Bluestein, C. C. Weiss, and A. L. Pazmany, “The vertical structure of a tornado: high-resolution, W-band, Doppler radar observations near Happy, Texas on 5 May 2002,” Monthly Weather Review, vol. 132, no. 10, pp. 2325–2337, 2004. View at Google Scholar
  5. W.-C. Lee and J. Wurman, “Diagnosed three-dimensional axisymmetric structure of the Mulhall tornado on 3 May 1999,” Journal of the Atmospheric Sciences, vol. 62, no. 7, pp. 2373–2393, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. R. L. Tanamachi, H. B. Bluestein, W.-C. Lee, M. Bell, and A. Pazmany, “Ground-Based Velocity Track Display (GBVTD) analysis of W-band Doppler radar data in a tornado near Stockton, Kansas, on 15 May 1999,” Monthly Weather Review, vol. 135, no. 3, pp. 783–800, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Wurman, D. Dowell, Y. Richardson et al., “The second verification of the origins of rotation in tornadoes experiment: VORTEX2,” Bulletin of the American Meteorological Society, vol. 93, no. 8, pp. 1147–1170, 2012. View at Publisher · View at Google Scholar
  8. J. Wurman and C. R. Alexander, “The 30 May 1998 Spencer, South Dakota, storm. Part II: comparison of observed damage and radar-derived winds in the tornadoes,” Monthly Weather Review, vol. 133, no. 1, pp. 97–119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Wurman, C. Alexander, P. Robinson, and Y. Richardson, “Low-level winds in tornadoes and potential catastrophic tornado impacts in urban areas,” Bulletin of the American Meteorological Society, vol. 88, no. 1, pp. 31–46, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. K. A. Kosiba, R. J. Trapp, and J. Wurman, “An analysis of the axisymmetric three-dimensional low level wind field in a tornado using mobile radar observations,” Geophysical Research Letters, vol. 35, no. 5, Article ID L05805, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. K. A. Kosiba and J. Wurman, “The three-dimensional axisymmetric wind field structure of the Spencer, South Dakota, 1998 tornado,” Journal of the Atmospheric Sciences, vol. 67, no. 9, pp. 3074–3083, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Wurman, K. A. Kosiba, and P. Robinson, “In-Situ, Doppler radar and video observations of the interior structure of a tornado and wind-damage relationship,” Bulletin of the American Meteorological Society, vol. 94, no. 6, pp. 835–846, 2013. View at Publisher · View at Google Scholar
  13. K. A. Kosiba and J. Wurman, “The three-dimensional structure and evolution of a tornado boundary layer,” Weather and Forecasting, vol. 28, no. 6, pp. 1552–1561, 2013. View at Publisher · View at Google Scholar
  14. C. R. Alexander and J. Wurman, “Comparison between DOW observed tornadoes and parent mesocyclones observed by WSR-88Ds,” in Proceedings of the 22nd Conference on Severe Local Storms, American Meteorological Society, Hyannis, Mass, USA, 2004.
  15. W. S. Lewellen, “Assessment of knowledge and implications for man,” in Proceedings of the Symposium on Tornadoes, pp. 107–143, Texas Tech University, Lubbock, Tex, USA, 1976.
  16. W. S. Lewellen, “Tornado vortex theory,” in The Tornado: Its Structure, Dynamics, Predictions and Hazards, C. Church, D. Burgess, C. Doswell, and R. Davies-Jone, Eds., vol. 79 of Geophysical Monograph, pp. 19–39, American Geophysical Union, 1993. View at Google Scholar
  17. R. P. Davies-Jones, R. J. Trapp, and H. B. Bluestein, “Tornadoes and tornadic storms,” in Severe Convective Storms, vol. 50 of Meteorological Monographs, pp. 167–222, 2001. View at Google Scholar
  18. W. S. Lewellen, D. C. Lewellen, and R. I. Sykes, “Large-eddy simulation of a tornado's interaction with the surface,” Journal of the Atmospheric Sciences, vol. 54, no. 5, pp. 581–605, 1997. View at Google Scholar · View at Scopus
  19. J. Wurman and K. A. Kosiba, “Fine-scale radar observations of tornado and mesocyclone structures,” Weather and Forecasting, vol. 28, no. 5, pp. 1157–1174, 2013. View at Publisher · View at Google Scholar
  20. W.-C. Lee, B. J.-D. Jou, P.-L. Chang, and S.-M. Deng, “Tropical cyclone kinematic structure retrieved from single-doppler radar observations. Part I: interpretation of Doppler velocity patterns and the GBVTD technique,” Monthly Weather Review, vol. 127, no. 10, pp. 2419–2439, 1999. View at Google Scholar · View at Scopus
  21. R. L. Tanamachi, H. B. Bluestein, M. Xue et al., “Near-surface vortex structure in a tornado and in a sub-tornado-strength, convective-storm vortex observed by a mobile, W-band radar during VORTEX2,” Monthly Weather Review, vol. 141, no. 11, pp. 3661–3690, 2013. View at Publisher · View at Google Scholar
  22. S. L. Barnes, “A technique for maximizing details in numerical weather map analysis,” Journal of Applied Meteorology, vol. 3, no. 4, pp. 396–409, 1964. View at Google Scholar
  23. P. M. Pauley and X. Wu, “The theoretical, discrete, and actual response of the Barnes objective analysis scheme for one- and two-dimensional fields,” Monthly Weather Review, vol. 118, no. 5, pp. 1145–1163, 1990. View at Google Scholar
  24. S. E. Koch, M. Desjardins, and P. J. Kocin, “An interactive Barnes objective map analysis scheme for use with satellite and conventional data,” Journal of Climate & Applied Meteorology, vol. 22, no. 9, pp. 1487–1503, 1983. View at Google Scholar · View at Scopus
  25. W. J. Rankine, A Manual of Applied Mechanics, Charles Griffin, London, UK, 1982.
  26. K. J. Mallen, M. T. Montgomery, and B. Wang, “Reexamining the near-core radial structure of the tropical cyclone primary circulation: implications for vortex resiliency,” Journal of the Atmospheric Sciences, vol. 62, no. 2, pp. 408–425, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. D. C. Lewellen, W. S. Lewellen, and J. Xia, “The influence of a local swirl ratio on tornado intensification near the surface,” Journal of the Atmospheric Sciences, vol. 57, no. 4, pp. 527–544, 2000. View at Google Scholar · View at Scopus
  28. J. Wurman, “Deployments of a 12-site in situ Wind/T/RH instrument array in tornadoes,” in Proceedings of the 24th Conference on Severe Local Storms, American Meteorological Society, Savannah, Ga, USA, 2008.