Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2014, Article ID 602528, 11 pages
http://dx.doi.org/10.1155/2014/602528
Research Article

Impact of a Detailed Urban Parameterization on Modeling the Urban Heat Island in Beijing Using TEB-RAMS

1Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences, State Key Laboratory of Remote Sensing Science, Beijing 100101, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO 80523, USA
4State Key Laboratory of Remote Sensing Science, Beijing Normal University and the Institute of Remote Sensing Applications of Chinese Academy of Sciences, School of Geography, Beijing Normal University, Beijing 100875, China

Received 12 December 2013; Revised 20 February 2014; Accepted 10 March 2014; Published 5 June 2014

Academic Editor: Klaus Dethloff

Copyright © 2014 Lei Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The Town Energy Budget (TEB) model coupled with the Regional Atmospheric Modeling System (RAMS) is applied to simulate the Urban Heat Island (UHI) phenomenon in the metropolitan area of Beijing. This new model with complex and detailed surface conditions, called TEB-RAMS, is from Colorado State University (CSU) and the ASTER division of Mission Research Corporation. The spatial-temporal distributions of daily mean 2 m air temperature are simulated by TEB-RAMS during the period from 0000 UTC 01 to 0000 UTC 02 July 2003 over the area of 116°E~116.8°E, 39.6°N~40.2°N in Beijing. The TEB-RAMS was run with four levels of two-way nested grids, and the finest grid is at 1 km grid increment. An Anthropogenic Heat (AH) source is introduced into TEB-RAMS. A comparison between the Land Ecosystem-Atmosphere Feedback model (LEAF) and the detailed TEB parameterization scheme is presented. The daily variations and spatial distribution of the 2 m air temperature agree well with the observations of the Beijing area. The daily mean 2 m air temperature simulated by TEB-RAMS with the AH source is 0.6 K higher than that without specifying TEB and AH over the metropolitan area of Beijing. The presence of urban underlying surfaces plays an important role in the UHI formation. The geometric morphology of an urban area characterized by road, roof, and wall also seems to have notable effects on the UHI intensity. Furthermore, the land-use dataset from USGS is replaced in the model by a new land-use map for the year 2010 which is produced by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS). The simulated regional mean 2 m air temperature is 0.68 K higher from 01 to 02 July 2003 with the new land cover map.