Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2014, Article ID 602528, 11 pages
http://dx.doi.org/10.1155/2014/602528
Research Article

Impact of a Detailed Urban Parameterization on Modeling the Urban Heat Island in Beijing Using TEB-RAMS

1Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences, State Key Laboratory of Remote Sensing Science, Beijing 100101, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO 80523, USA
4State Key Laboratory of Remote Sensing Science, Beijing Normal University and the Institute of Remote Sensing Applications of Chinese Academy of Sciences, School of Geography, Beijing Normal University, Beijing 100875, China

Received 12 December 2013; Revised 20 February 2014; Accepted 10 March 2014; Published 5 June 2014

Academic Editor: Klaus Dethloff

Copyright © 2014 Lei Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. M. Vitousek, “Beyond global warming: ecology and global change,” Ecology, vol. 75, no. 7, pp. 1861–1876, 1994. View at Google Scholar · View at Scopus
  2. T. R. Karl and K. E. Trenberth, “Modern global climate change,” Science, vol. 302, no. 5651, pp. 1719–1723, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Hansen, R. Ruedy, M. Sato, and K. Lo, “Global surface temperature change,” Reviews of Geophysics, vol. 48, no. 4, Article ID RG4004, pp. 1–29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. R. D. Bornstein, “Observations of the urban heat island effects in New York City,” Journal of Applied Meteorology, vol. 7, pp. 575–582, 1968. View at Google Scholar
  5. L. Q. Myrup, “A numerical model of the urban heat island,” Journal of Applied Meteorology, vol. 8, no. 4, pp. 908–918, 1969. View at Google Scholar
  6. T. R. Oke, “The distinction between canopy and boundary-layer urban heat islands,” Atmosphere, vol. 14, no. 4, pp. 269–727, 1976. View at Google Scholar
  7. Y. H. Kim and J. J. Baik, “Maximum urban heat island intensity in Seoul,” Journal of Applied Meteorology, vol. 41, pp. 651–659, 2002. View at Google Scholar
  8. A. J. Arnfield, “Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island,” International Journal of Climatology, vol. 23, no. 1, pp. 1–26, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. C. S. B. Grimmond, “Progress in measuring and observing the urban atmosphere,” Theoretical and Applied Climatology, vol. 84, no. 1–3, pp. 3–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. P. M. Mark, J. B. Martin, and A. B. Richard, “Climate change in cities due to global warming and urban effects,” Geophysical Research Letters, vol. 37, Article ID L09705, 2010. View at Publisher · View at Google Scholar
  11. K. W. Oleson, G. B. Bonan, and J. Feddema, “Effects of white roofs on urban temperature in a global climate model,” Geophysical Research Letters, vol. 37, no. 3, Article ID L03701, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. D. E. Parker, “Urban heat island effects on estimates of observed climate change,” Wiley Interdisciplinary Reviews: Climate Change, vol. 1, no. 1, pp. 123–133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Y. Ren, Z. Y. Chu, Z. H. Chen, and Y. Y. Ren, “Implications of temporal change in urban heat island intensity observed at Beijing and Wuhan stations,” Geophysical Research Letters, vol. 34, no. 5, Article ID L05711, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Miao, F. Chen, M. A. LeMone, M. Tewari, Q. Li, and Y. Wang, “An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing,” Journal of Applied Meteorology and Climatology, vol. 48, no. 3, pp. 484–501, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. C. L. Zhang, F. Chen, S. G. Miao, Q. C. Li, X. A. Xia, and C. Y. Xuan, “Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area,” Journal of Geophysical Research D: Atmospheres, vol. 114, no. 2, Article ID D02116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. C. J. Tremback, J. Powell, W. R. Cotton, and R. A. Pielke, “The forward-in-time upstream advection scheme: extension to higher orders,” Monthly Weather Review, vol. 115, no. 2, pp. 540–555, 1987. View at Google Scholar · View at Scopus
  17. R. A. Pielke, W. R. Cotton, R. L. Walko et al., “A comprehensive meteorological modeling system-RAMS,” Meteorology and Atmospheric Physics, vol. 49, no. 1–4, pp. 69–91, 1992. View at Publisher · View at Google Scholar · View at Scopus
  18. W. R. Cotton, R. A. Pielke Sr., R. L. Walko et al., “RAMS 2001: current status and future directions,” Meteorology and Atmospheric Physics, vol. 82, no. 1–4, pp. 5–29, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. C. M. Rozoff, W. R. Cotton, and J. O. Adegoke, “Simulation of St. Louis, Missouri, land use impacts on thunderstorms,” Journal of Applied Meteorology, vol. 42, pp. 716–738, 2002. View at Google Scholar
  20. L. Lu, S. Pielke R.A., G. E. Liston, W. J. Parton, D. Ojima, and M. Hartman, “Implementation of a two-way interactive atmospheric and ecological model and its application to the central United States,” Journal of Climate, vol. 14, no. 5, pp. 900–919, 2001. View at Google Scholar · View at Scopus
  21. L. Lu and J. Shuttleworth, “Incorporating NDVI-derived LAI into the climate version of RAMS and its impact on regional climate,” Journal of Hydrometeorology, vol. 6, pp. 347–362, 2002. View at Google Scholar
  22. L. Lu, A. S. Denning, M. A. da Silva-Dias et al., “Mesoscale circulations and atmospheric CO2 variations in the Tapajós Region, Pará, Brazil,” Journal of Geophysical Research D: Atmospheres, vol. 110, no. 21, Article ID D21102, pp. 1–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. E. D. Freitas, C. M. Rozoff, W. R. Cotton, and P. L. Silva Dias, “Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of São Paulo, Brazil,” Boundary-Layer Meteorology, vol. 122, no. 1, pp. 43–65, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Zhang, N. Sato, T. Izumi, K. Hanaki, and T. Aramaki, “Modified RAMS-Urban canopy model for heat island simulation in Chongqing, China,” Journal of Applied Meteorology and Climatology, vol. 47, no. 2, pp. 509–524, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. J. W. Deardorff, “Efficient prediction of ground surface temperature and moisture, with inclusion of layer of vegetation,” Journal of Geophysical Research: Oceans, vol. 83, pp. 1889–1903, 1978. View at Publisher · View at Google Scholar
  26. R. L. Walko, L. E. Band, J. Baron et al., “Coupled atmosphere-biophysics-hydrology models for environmental modeling,” Journal of Applied Meteorology, vol. 39, no. 6, pp. 931–944, 2000. View at Google Scholar · View at Scopus
  27. B. Offerle, P. Jonsson, I. Eliasson, and C. S. B. Grimmond, “Urban modification of the surface energy balance in the West African Sahel: Ouagadougou, Burkina Faso,” Journal of Climate, vol. 18, no. 19, pp. 3983–3995, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Salamanca, A. Krpo, A. Martilli, and A. Clappier, “A new building energy model coupled with an urban canopy parameterization for urban climate simulations-part I. formulation, verification, and sensitivity analysis of the model,” Theoretical and Applied Climatology, vol. 99, no. 3-4, pp. 331–344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Masson, “A physically-based scheme for the urban energy budget in atmospheric models,” Boundary-Layer Meteorology, vol. 94, no. 3, pp. 357–397, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Kusaka, H. Kondo, Y. Kikegawa, and F. Kimura, “A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models,” Boundary-Layer Meteorology, vol. 101, no. 3, pp. 329–358, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Lemonsu, C. S. B. Grimmond, and V. Masson, “Modeling the surface energy balance of the core of an old Mediterranean city: Marseille,” Journal of Applied Meteorology, vol. 43, pp. 312–327, 2004. View at Publisher · View at Google Scholar
  32. V. Masson, C. S. B. Grimmond, and T. R. Oke, “Evaluation of the Town Energy Balance (TEB) scheme with direct measurements from dry districts in two cities,” Journal of Applied Meteorology, vol. 41, no. 10, pp. 1011–1026, 2002. View at Google Scholar · View at Scopus
  33. V. Masson, “Urban surface modeling and the meso-scale impact of cities,” Theoretical and Applied Climatology, vol. 84, no. 1–3, pp. 35–45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Pigeon, M. A. Moscicki, J. A. Voogt, and V. Masson, “Simulation of fall and winter surface energy balance over a dense urban area using the TEB scheme,” Meteorology and Atmospheric Physics, vol. 102, no. 3-4, pp. 159–171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Struzewska and J. W. Kaminski, “Impact of urban parameterization on high resolution air quality forecast with the GEM-AQ model,” Atmospheric Chemistry and Physics, vol. 12, no. 21, pp. 10387–10404, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Sarrat, A. Lemonsu, V. Masson, and D. Guedalia, “Impact of urban heat island on regional atmospheric pollution,” Atmospheric Environment, vol. 40, no. 10, pp. 1743–1758, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Anderson, P. Bauer, A. Beljaars et al., “Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecastingsystem,” Bulletin of the American Meteorological Society, vol. 86, no. 3, pp. 387–402, 2005. View at Publisher · View at Google Scholar
  38. J. R. Anderson, E. E. Hardy, J. T. Roach, and R. E. Witmer, “A land use and land cover classification system for use with remote sensor data,” U.S. Geological Survey Professional Paper 964, 1976. View at Google Scholar
  39. T. R. Loveland, B. C. Reed, J. F. Brown et al., “Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data,” International Journal of Remote Sensing, vol. 21, no. 6-7, pp. 1303–1330, 2000. View at Google Scholar · View at Scopus
  40. P. J. Sellers, J. A. Berry, G. J. Collatz, C. B. Field, and F. G. Hall, “Canopy reflectance, photosynthesis, and transpiration. III: a reanalysis using improved leaf models and a new canopy integration scheme,” Remote Sensing of Environment, vol. 42, no. 3, pp. 187–216, 1992. View at Google Scholar · View at Scopus
  41. P. J. Sellers, D. A. Randall, G. J. Collatz et al., “A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: model formulation,” Journal of Climate, vol. 9, no. 4, pp. 676–705, 1996. View at Google Scholar · View at Scopus