Table of Contents Author Guidelines Submit a Manuscript
Advances in Meteorology
Volume 2015, Article ID 852108, 16 pages
http://dx.doi.org/10.1155/2015/852108
Research Article

The Sensible Heat Flux in the Course of the Year at Ny-Ålesund, Svalbard: Characteristics of Eddy Covariance Data and Corresponding Model Results

1Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A43, 14473 Potsdam, Germany
2Departement of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd, 90183 Umeå, Sweden
3Department of Micrometeorology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
4Bayreuth Center of Ecology and Ecosystem Research (BayCEER), Dr. Hans-Frisch-Straße 1-3, 95448 Bayreuth, Germany

Received 15 June 2014; Revised 14 August 2014; Accepted 26 August 2014

Academic Editor: Bala Subrahamanyam

Copyright © 2015 Georg Jocher et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. C. Serreze and R. G. Barry, “Processes and impacts of Arctic amplification: a research synthesis,” Global and Planetary Change, vol. 77, no. 1-2, pp. 85–96, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Pithan and T. Mauritsen, “Arctic amplification dominated by temperature feedbacks in contemporary climate models,” Nature Geoscience Letters, vol. 7, pp. 181–184, 2014. View at Publisher · View at Google Scholar
  3. J. A. Screen and I. Simmonds, “Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification,” Geophysical Research Letters, vol. 37, no. 16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. E. Kay, K. Raeder, A. Gettelman, and J. Anderson, “The boundary layer response to recent arctic sea ice loss and implications for high-latitude climate feedbacks,” Journal of Climate, vol. 24, no. 2, pp. 428–447, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Tjernström, M. Žagar, G. Svensson et al., “Modelling the Arctic boundary layer: an evaluation of six ARCMIP regional-scale models using data from the SHEBA project,” Boundary-Layer Meteorology, vol. 117, no. 2, pp. 337–381, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Medeiros, C. Deser, R. A. Tomas, and J. E. Kay, “Arctic inversion strength in climate models,” Journal of Climate, vol. 24, no. 17, pp. 4733–4740, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Mäkiranta, T. Vihma, A. Sjöblom, and E.-M. Tastula, “Observations and modelling of the atmospheric boundary layer over sea-ice in a Svalbard Fjord,” Boundary-Layer Meteorology, vol. 140, no. 1, pp. 105–123, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. A. S. Monin and A. M. Obukhov, “Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnom sloe atmosfery (basic laws of turbulent mixing in the atmosphere near the ground),” Trudy Geofizicheskogo Instituta, Akademiya Nauk SSSR, vol. 24, no. 151, pp. 163–187, 1954. View at Google Scholar
  9. D. Handorf, T. Foken, and C. Kottmeier, “The stable atmospheric boundary layer over an antarctic ice sheet,” Boundary-Layer Meteorology, vol. 91, no. 2, pp. 165–189, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Aubinet, T. Vesala, and D. Papale, Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer, London, UK, 2012.
  11. G. Jocher, F. Karner, C. Ritter et al., “The near-surface small-scale spatial and temporal variability of sensible and latent heat exchange in the Svalbard region: a case study,” ISRN Meteorology, vol. 2012, Article ID 357925, 14 pages, 2012. View at Publisher · View at Google Scholar
  12. J. Lüers and J. Bareiss, “The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site—the arctic turbulence experiment 2006 on Svalbard (ARCTEX-2006),” Atmospheric Chemistry and Physics, vol. 10, no. 1, pp. 157–168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Westermann, J. Lüers, M. Langer, K. Piel, and J. Boike, “The annual surface energy budget of a high-arctic permafrost site on Svalbard, Norway,” Cryosphere, vol. 3, no. 2, pp. 245–263, 2009. View at Google Scholar · View at Scopus
  14. T. Foken, “Vorschlag eines verbesserten Energieaustauschmodells mit Berücksichtigung der molekularen Grenzschicht der Atmosphäre,” Meteorologische Zeitschrift, vol. 29, pp. 32–39, 1979. View at Google Scholar
  15. T. Foken, “The parameterisation of the energy exchange across the air-sea interface,” Dynamics of Atmospheres and Oceans, vol. 8, no. 3-4, pp. 297–305, 1984. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Maturilli, A. Herber, and G. König-Langlo, “Climatology and time series of surface meteorology in Ny-Ålesund, Svalbard,” Earth System Science Data, vol. 5, pp. 155–163, 2013. View at Publisher · View at Google Scholar
  17. J. A. Businger, “Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques,” Journal of Climate & Applied Meteorology, vol. 25, no. 8, pp. 1100–1124, 1986. View at Google Scholar · View at Scopus
  18. D. H. Haugen, Ed., Workshop on Micrometeorology, American Meteorological Society, Boston, Mass, USA, 1973.
  19. J. C. Kaimal and J. J. Finnigan, Atmospheric Boundary Layer Flows: Their Structure and Measurement, Oxford University Press, New York, NY, USA, 1994.
  20. X. Lee, W. J. Massman, and B. Law, Eds., Handbook of Micrometeorolgy: A Guide for Surface Flux Measurements and Analysis, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004.
  21. G. Fratini and M. Mauder, “Towards a consistent eddy-covariance processing: an intercomparison of EddyPro and TK3,” Atmospheric Measurement Techniques, vol. 7, pp. 2273–2281, 2014. View at Publisher · View at Google Scholar
  22. M. Mauder and T. Foken, Documentation and Instruction Manual of the Eddy Covariance Software Package TK3, vol. 46, Arbeitsergebnisse Universität Bayreuth, Abteilung Mikrometeorologie, Bayreuth, Germany, 2011.
  23. M. Mauder, T. Foken, R. Clement et al., “Quality control of CarboEurope flux data—part 2: inter-comparison of eddy-covariance software,” Biogeosciences, vol. 5, no. 2, pp. 451–462, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Foken, M. Göckede, M. Mauder, L. Mahrt, B. D. Amiro, and W. J. Munger, “Post-field data quality control,” in Handbook of Micrometeorology: A Guide for Surface Flux Measurements and Analysis, X. Lee, W. J. Massmann, and B. Law, Eds., pp. 181–208, Kluwer, Dordrecht, The Netherlands, 2004. View at Google Scholar
  25. T. Foken, R. Leuning, S. P. Oncley, M. Mauder, and M. Aubinet, “Corrections and data quality control,” in Eddy Covariance: A Practical Guide to Measurement and Data Analysis, M. Aubinet, T. Vesala, and D. Papale, Eds., Springer Atmospheric Sciences, pp. 85–131, Springer, Dordrecht, The Netherlands, 2012. View at Publisher · View at Google Scholar
  26. T. Foken and B. Wichura, “Tools for quality assessment of surface-based flux measurements,” Agricultural and Forest Meteorology, vol. 78, no. 1-2, pp. 83–105, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Foken, G. Skeib, and S. H. Richter, “Dependence of the integral turbulence characteristics on the stability of stratification and their use for Doppler-Sodar measurements,” Meteorologische Zeitschrift, vol. 41, pp. 311–315, 1991. View at Google Scholar
  28. C. Thomas and T. Foken, “Re-evaluation of integral turbulence characteristics and their parameterisations,” in Proceedings of the 15th Conference on Turbulence and Boundary Layers, pp. 129–132, American Meteorological Society, Wageningen, The Netherlands, July 2002.
  29. H. Sodemann and T. Foken, “Special characteristics of the temperature structure near the surface,” Theoretical and Applied Climatology, vol. 80, no. 2–4, pp. 81–89, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Jocher, Charakterisierung der arktischen bodennahen Turbulenz unter Verwendung verschiedener Methoden der Flussberechnung und daraus resultierende Möglichkeiten für die Berechnung der bodennahen turbulenten Flüsse im regionalen Klimamodell HIRHAM5 [Ph.D. thesis], University of Potsdam, Institute for Physics and Astronomy, Potsdam, Germany, 2013.
  31. J. A. Businger, J. C. Wyngaard, Y. Izumi, and E. F. Bradley, “Flux-profile relationships in the atmospheric surface layer,” Journal of the Atmospheric Sciences, vol. 28, no. 2, pp. 181–189, 1971. View at Google Scholar · View at Scopus
  32. G. Skeib, “Zur Definition universeller Funktionen für die Gradienten von Windgeschwindigkeit und Temperatur in der bodennahen Luftschicht,” Meteorologische Zeitschrift, vol. 30, pp. 23–32, 1980. View at Google Scholar
  33. U. H and U. Högström, “Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation,” Boundary-Layer Meteorology, vol. 42, no. 1-2, pp. 55–78, 1988. View at Publisher · View at Google Scholar
  34. A. M. Obukhov, “Turbulentnost'v temperaturnoj—neo dnorodnoj atmosphere (turbulence in an atmosphere with a non-uniform temperature,” Trudy Instituta Teoreticheskio Geofiziki AN SSSR, vol. 1, pp. 95–115, 1946. View at Google Scholar
  35. A. M. Obukhov, “Turbulence in an atmosphere with a non-uniform temperature,” Boundary-Layer Meteorology, vol. 2, no. 1, pp. 7–29, 1971. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Foken, “The molecular temperature boundary layer of the atmosphere over various surfaces,” Archiv für Meteorologie, Geophysik und Bioklimatologie A, vol. 27, no. 1, pp. 59–67, 1978. View at Publisher · View at Google Scholar · View at Scopus
  37. H. J. Beine, S. Argentini, A. Maurizi, G. Mastrantonio, and A. Viola, “The local wind field at Ny-Ålesund and the Zeppelin mountain at svalbard,” Meteorology and Atmospheric Physics, vol. 78, no. 1-2, pp. 107–113, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Foken, S. A. Kitajgorodskij, and O. A. Kuznecov, “On the dynamics of the molecular temperature boundary layer above the sea,” Boundary-Layer Meteorology, vol. 15, no. 3, pp. 289–300, 1978. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Westermann, M. Langer, and J. Boike, “Spatial and temporal variations of summer surface temperatures of high-arctic tundra on Svalbard—implications for MODIS LST based permafrost monitoring,” Remote Sensing of Environment, vol. 115, no. 3, pp. 908–922, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. O. B. Christensen, M. Drews, and J. H. Christensen, “The HIRHAM regional climate model version 5 (β),” Tech. Rep. 06-17, Danish Meteorological Institute, 2007. View at Google Scholar
  41. D. Handorf and T. Foken, “Strukturanalyse der atmosphärischen Turbulenz mittels Wavelet-Verfahren zur Bestimmung der Austauschprozesse über dem antarktischen Schelfeis,” Deutscher Wetterdienst, Geschäftsbereich Forschung und Entwicklung, vol. 47, pp. 1–49, 1997. View at Google Scholar
  42. S. Westermann, Sensitivity of permafrost [Ph.D. thesis], Universität Heidelberg, 2010.
  43. T. Foken, Der Bayreuther Turbulenzknecht, vol. 1 of Abteilung Mikrometeorologie, Arbeitsergebnisse Universität Bayreuth, 1999.