Table of Contents Author Guidelines Submit a Manuscript
Advances in Mathematical Physics
Volume 2012, Article ID 193190, 21 pages
http://dx.doi.org/10.1155/2012/193190
Research Article

Multiparameter Statistical Models from 𝑁 2 Γ— 𝑁 2 Braid Matrices: Explicit Eigenvalues of Transfer Matrices T ( π‘Ÿ ) , Spin Chains, Factorizable Scatterings for All 𝑁

1Laboratoire de Physique Théorique, Université d'Oran Es-Sénia, 31100 Oran, Algeria
2Institut des Sciences et de la Technologie, Centre Universitaire d'Ain Témouchent, 46000 Ain Témouchent, Algeria
3Centre de Physique Théorique, Ecole Polytechnique, 91128 Palaiseau Cedex, France

Received 23 March 2012; Accepted 28 May 2012

Academic Editor: Yao-Zhong Zhang

Copyright © 2012 B. Abdesselam and A. Chakrabarti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, UK, 1982. View at Zentralblatt MATH
  2. H. J. de Vega, β€œYang-Baxter algebras, integrable theories and quantum groups,” International Journal of Modern Physics A, vol. 4, no. 10, pp. 2371–2463, 1989. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH
  3. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method, Correlation Functions and Algebraic Bethe Ansatz, Cambridge University Press, Cambridge, UK, 1993. View at Publisher Β· View at Google Scholar
  4. M. Jimbo, T. Miwa, and A. Nakayashiki, β€œDifference equations for the correlation functions of the eight-vertex model,” Journal of Physics A, vol. 26, no. 9, pp. 2199–2209, 1993. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH
  5. A. Chakrabarti, β€œCanonical factorization and diagonalization of Baxterized braid matrices: explicit constructions and applications,” Journal of Mathematical Physics, vol. 44, no. 11, pp. 5320–5349, 2003. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH
  6. A. Chakrabarti, β€œA nested sequence of projectors and corresponding braid matrices R^(θ):(1). I. Odd dimensions,” Journal of Mathematical Physics, vol. 46, no. 6, p. 18, 2005. View at Publisher Β· View at Google Scholar
  7. B. Abdesselam and A. Chakrabarti, β€œNested sequence of projectors. II. Multiparameter multistate statistical models, Hamiltonians, S-matrices,” Journal of Mathematical Physics, vol. 47, no. 5, p. 25, 2006. View at Publisher Β· View at Google Scholar
  8. B. Abdesselam, A. Chakrabarti, V. K. Dobrev, and S. G. Mihov, β€œHigher dimensional multiparameter unitary and nonunitary braid matrices: even dimensions,” Journal of Mathematical Physics, vol. 48, no. 10, p. 6, 2007. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH
  9. B. Abdesselam and A. Chakrabarti, β€œA new eight vertex model and higher dimensional, multiparameter generalizations,” Journal of Mathematical Physics, vol. 49, no. 5, p. 21, 2008. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH
  10. B. Abdesselam, A. Chakrabarti, V. K. Dobrev, and S. G. Mihov, β€œExotic bialgebras from 9×9 unitary braid matrices,” Physics of Atomic Nuclei, vol. 74, no. 6, pp. 824–831, 2011, (851–857 Russian edition). View at Google Scholar
  11. J. B. Saleur and H. Zuber, β€œIntegrable lattice models and quantum groups,” in proceedings of the Trieste Spring School on String Theory and Quantum Gravity, 1990.
  12. D. Arnaudon, A. Chakrabarti, V. K. Dobrev, and S. G. Mihov, β€œExotic bialgebra Sϕ3: representations, Baxterisation and applications,” Annales Henri Poincaré, vol. 7, no. 7-8, pp. 1351–1373, 2006. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH
  13. A. B. Zamolodchikov and A. B. Zamolodchikov, β€œFactorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models,” Annals of Physics, vol. 120, no. 2, pp. 253–291, 1979. View at Publisher Β· View at Google Scholar
  14. B. Abdesselam, A. Chakrabarti, V. K. Dobrev, and S. G. Mihov, β€œHigher dimensional unitary braid matrices: construction, associated structures, and entanglements,” Journal of Mathematical Physics, vol. 48, no. 5, p. 21, 2007. View at Publisher Β· View at Google Scholar Β· View at Zentralblatt MATH
  15. S. J. Kauffman and L. H. Lomonaco Jr, β€œBraiding operators are universal quantum gates,” New Journal of Physics, vol. 6, p. 34, 2004. View at Publisher Β· View at Google Scholar
  16. Y. Zhang, L. H. Kauffman, and M.-L. Ge, β€œYang-Baxterizations, universal quantum gates and Hamiltonians,” Quantum Information Processing, vol. 4, no. 3, pp. 159–197, 2005. View at Publisher Β· View at Google Scholar
  17. J. H. H. Perk and C. L. Schultz, β€œNew families of commuting transfer matrices in Q-state vertex models,” Physics Letters A, vol. 84, no. 8, pp. 407–410, 1981. View at Publisher Β· View at Google Scholar
  18. H. Perk and J. H. H. Au-Yang, β€œYang-Baxter equations,” Encyclopedia of Mathematical Physics, vol. 5, pp. 465–473, 2006. View at Google Scholar
  19. C. L. Schultz, β€œEigenvectors of the multicomponent generalization of the six-vertex model,” Physica A, vol. 122, no. 1-2, pp. 71–88, 1983. View at Publisher Β· View at Google Scholar