Table of Contents Author Guidelines Submit a Manuscript
Advances in Mathematical Physics
Volume 2014, Article ID 637017, 11 pages
http://dx.doi.org/10.1155/2014/637017
Research Article

Developing a Local Neurofuzzy Model for Short-Term Wind Power Forecasting

1Department of Computer Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
2Mathematics Department, Science Faculty and Institute for Mathematical Research, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

Received 24 April 2014; Revised 2 June 2014; Accepted 16 June 2014; Published 16 July 2014

Academic Editor: Hossein Jafari

Copyright © 2014 E. Faghihnia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. International Energy Agency, World Energy Outlook, 2010, http://www.iea.org/Textbase/about/copyright.asp.
  2. U.S. Energy Information Administration, http://www.eia.gov/.
  3. J. W. Taylor, P. E. McSharry, and R. Buizza, “Wind power density forecasting using ensemble predictions and time series models,” IEEE Transactions on Energy Conversion, vol. 24, no. 3, pp. 775–782, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. A. M. Foley, P. G. Leahy, A. Marvuglia, and E. J. McKeogh, “Current methods and advances in forecasting of wind power generation,” Renewable Energy, vol. 37, no. 1, pp. 1–8, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Amjady, F. Keynia, and H. Zareipour, “Short-term wind power forecasting using ridgelet neural network,” Electric Power Systems Research, vol. 81, no. 12, pp. 2099–2107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. R. G. Kavasseri and K. Seetharaman, “Day-ahead wind speed forecasting using f-ARIMA models,” Renewable Energy, vol. 34, no. 5, pp. 1388–1393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. P. S. Catalão, H. M. I. Pousinho, and V. M. F. Mendes, “Hybrid intelligent approach for short-term wind power forecasting in Portugal,” IET Renewable Power Generation, vol. 5, no. 3, pp. 251–257, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Amjady, F. Keynia, and H. Zareipour, “Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization,” IEEE Transactions on Sustainable Energy, vol. 2, no. 3, pp. 265–276, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Zhou and J. Fang, “Wind power forecasting based on econometrics theory,” in Proceedings of the IEEE Electrical Power and Energy Conference, pp. 1–6, Halifax, Canada, August 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Cadenas and W. Rivera, “Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model,” Renewable Energy, vol. 35, no. 12, pp. 2732–2738, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. R. W. Borg and L. J. Rothkrantz, “Short-term wind power prediction with radial basis networks,” Neural Network World, vol. 16, no. 2, pp. 151–161, 2006. View at Google Scholar · View at Scopus
  12. G. Li, J. Shi, and J. Zhou, “Bayesian adaptive combination of short-term wind speed forecasts from neural network models,” Renewable Energy, vol. 36, no. 1, pp. 352–359, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Louka, G. Galanis, N. Siebert et al., “Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 96, no. 12, pp. 2348–2362, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. I. G. Damousis and P. Dokopoulos, “A fuzzy expert system for the forecasting of wind speed and power generation in wind farms,” in Proceedings of the 22nd IEEE International Conference on Power Industry Computer Applications (PICA '01), pp. 63–69, Sydney, Australia, May 2001. View at Scopus
  15. G. Giebel, R. Brownsword, G. Kariniotakis, M. Denhard, and C. Draxl, “The state-of-the-art in short-term prediction of wind power: a literature overview,” 2nd edition, Project report for the ANEMOS.plus and SafeWind projects, Roskilde, Denmark, 2011, http://www.prediktor.dk/.
  16. C. Monterio, R. Bessa, V. Miranda, A. Botterud, J. Wang, and G. Conzelmann, Wind Power Forecasting: State-of-the-Art 2009, Argonne National Laboratory, 2009, http://www.dis.anl.gov/pubs/65613.pdf.
  17. O. Nelles, Nonlinear System Identification from Classical Approaches to Neural Networks and Fuzzy Models, Springer, 2001. View at Publisher · View at Google Scholar · View at MathSciNet
  18. O. Bänfer, M. Franke, and O. Nelles, “Adaptive local model networks with higher degree polynomials,” in Proceedings of the International Conference on Control, Automation and Systems (ICCAS '10), pp. 168–171, Gyeonggi-do, Republic of Korea, October 2010. View at Scopus
  19. H. Iranmanesh, M. Abdollahzade, and A. Miranian, “Mid-term energy demand forecasting by hybrid neuro-fuzzy models,” Energies, vol. 5, no. 1, pp. 1–21, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1226–1238, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. “Sotavento wind farm data,” http://www.sotaventogalicia.com/.
  22. D. Liu and H. Li, “Short-term wind speed and output power forecasting based on WT and LSSVM,” in Proceedings of the International Conference on Information Engineering and Computer Science (ICIECS '09), pp. 1–4, December 2009. View at Publisher · View at Google Scholar · View at Scopus