Table of Contents Author Guidelines Submit a Manuscript
Advances in Mathematical Physics
Volume 2015, Article ID 274251, 7 pages
http://dx.doi.org/10.1155/2015/274251
Research Article

Analytical Models for Gravitating Radiating Systems

Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa

Received 1 April 2015; Accepted 27 April 2015

Academic Editor: Luigi C. Berselli

Copyright © 2015 B. P. Brassel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We analyse the gravitational behaviour of a relativistic heat conducting fluid in a shear-free spherically symmetric spacetime. We show that the isotropy of pressure is a consistency condition which realises a second order nonlinear ordinary differential equation with variable coefficients in the gravitational potentials. Several new classes of solutions are found to the governing equation by imposing various forms on one of the potentials. Interestingly, a complex transformation leads to an exact solution with only real metric functions. All solutions are written in terms of elementary functions. We demonstrate graphically that the fluid pressure, energy density, and heat flux are well behaved for the model, and the model is consistent with a core-envelope framework.