Table of Contents Author Guidelines Submit a Manuscript
Advances in Mathematical Physics
Volume 2015, Article ID 827238, 6 pages
Research Article

Power Load Prediction Based on Fractal Theory

1College of Electronic & Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
2Department of Mathematics (DIPMAT), University of Salerno, 84084 Fisciano, Italy

Received 1 August 2014; Accepted 7 September 2014

Academic Editor: Xiao-Jun Yang

Copyright © 2015 Liang Jian-Kai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The basic theories of load forecasting on the power system are summarized. Fractal theory, which is a new algorithm applied to load forecasting, is introduced. Based on the fractal dimension and fractal interpolation function theories, the correlation algorithms are applied to the model of short-term load forecasting. According to the process of load forecasting, the steps of every process are designed, including load data preprocessing, similar day selecting, short-term load forecasting, and load curve drawing. The attractor is obtained using an improved deterministic algorithm based on the fractal interpolation function, a day’s load is predicted by three days’ historical loads, the maximum relative error is within 3.7%, and the average relative error is within 1.6%. The experimental result shows the accuracy of this prediction method, which has a certain application reference value in the field of short-term load prediction.