Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2009, Article ID 582739, 10 pages
http://dx.doi.org/10.1155/2009/582739
Research Article

Prediction of Continuous Cooling Diagrams for the Precision Forged Tempering Steel 50CrMo4 by Means of Artificial Neural Networks

1Institut Für Werkstoffkunde, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen, Germany
2Faculty of Applied Mathematics, Dnipropetrovsk National University, Prospekt Y. Gagarina 72, 49010 Dnipropetrovsk, Ukraine
3Faculty of Information Technologies, National Mining University of Ukraine, Prospekt Karla Marksa 19, 49027 Dnipropetrovsk, Ukraine

Received 23 November 2008; Accepted 24 February 2009

Academic Editor: Richard Hennig

Copyright © 2009 Florian Nürnberger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B.-A. Behrens, E. Doege, S. Reinsch, K. Telkamp, H. Daehndel, and A. Specker, “Precision forging processes for high-duty automotive components,” Journal of Materials Processing Technology, vol. 185, no. 1–3, pp. 139–146, 2007. View at Publisher · View at Google Scholar
  2. M. Bernard, M. van Well, W. Reimche, and Fr.-W. Bach, “Randzonenhärtung von Vergütungsstahl mit Sprühabschreckung—Einfluss der Düsenanordnung auf das Härteergebnis und zerstörungsfreie Bestimmung der Randzonenhärte mittels Harmonischen-Analyse von Wirbelstromsignalen,” Härterei-Technische Mitteilungen, vol. 60, no. 3, pp. 150–157, 2005. View at Google Scholar
  3. F. Wever and A. Rose, Atlas zur Wärmebehandlung der Stähle. Vol. 1, Verein Deutscher Eisenhüttenleute, Stahleisen, Düsseldorf, Germany, 1961.
  4. G. F. Vander Voort, Atlas of Time-Temperature Diagrams for Irons and Steels, ASM International, Metals Park, Ohio, USA, 1991.
  5. A. Weise, Entwicklung von Gefüge und Eigenspannungen bei der thermomechanischen Behandlung des Stahls 42CrMo4., dissertation, Technische Universität Chemnitz, Chemnitz, Germany, 1998.
  6. R. Kaspar, U. Lotter, and C. Biegus, “Influence of thermomechanical treatment on the transformation behaviour of steels,” Steel Research, vol. 65, no. 6, pp. 242–247, 1994. View at Google Scholar
  7. K. Kerber and Fr.-W. Bach, Eds., “Process chain for the production of precision-forged high performance components,” Work Report and Renewal Proposal 2009-2010-2011, Collaborative Research Centre 489, July 2008. View at Google Scholar
  8. Stahl-Eisen-Prüfblatt. 1680-61, Aufstellung von Zeit-Temperatur-Umwandlungsschaubildern für Eisenlegierungen, STAHL-EISEN-Prüfblätter (SEP) des Vereins Deutscher Eisenhüttenleute, 3rd edition, 1990.
  9. Stahl-Eisen-Prüfblatt. 1681, Guidelines for preparation, execution and evaluation of dilatometric transformation test on iron alloys, STAHL-EISEN-Prüfblätter (SEP) des Vereins Deutscher Eisenhüttenleute, 2nd edition, 1998.
  10. PN-68/H-04500, “Badania dylatometryczne metali i ich stopów,” 1968. View at Google Scholar
  11. H. K. D. H. Bhadeshia, “Neural networks in materials science,” ISIJ International, vol. 39, no. 10, pp. 966–979, 1999. View at Publisher · View at Google Scholar
  12. S. Malinov and W. Sha, “Software products for modelling and simulation in materials science,” Computational Materials Science, vol. 28, no. 2, pp. 179–198, 2003. View at Publisher · View at Google Scholar
  13. S. Malinov, W. Sha, and Z. Guo, “Application of artificial neural network for prediction of time-temperature-transformation diagrams in titanium alloys,” Materials Science and Engineering A, vol. 283, no. 1-2, pp. 1–10, 2000. View at Publisher · View at Google Scholar
  14. C. Garcia-Mateo, C. Capdevila, F. Garcia Caballero, and C. García de de Andrés, “Artificial neural network modeling for the prediction of critical transformation temperatures in steels,” Journal of Materials Science, vol. 42, no. 14, pp. 5391–5397, 2007. View at Publisher · View at Google Scholar
  15. A. Doktorowski, Datenbasierte Modellierung der Gefügebildung bei der gamma/alpha-Umwandlung von Stählen, dissertation, TU Bergakademie, Freiberg, Germany, 2002.
  16. J. Wang, P. J. van der Wolk, and S. van der Zwaag, “Effects of carbon concentration and cooling rate on continuous cooling transformations predicted by artificial neural network,” ISIJ International, vol. 39, no. 10, pp. 1038–1046, 1999. View at Publisher · View at Google Scholar
  17. J. Trzaska and L. A. Dobrzański, “Modelling of CCT diagrams for engineering and constructional steels,” Journal of Materials Processing Technology, vol. 192-193, pp. 504–510, 2007. View at Publisher · View at Google Scholar
  18. L. A. Dobrzański and J. Trzaska, “Application of neural networks to forecasting the CCT diagrams,” Journal of Materials Processing Technology, vol. 157-158, pp. 107–113, 2004. View at Publisher · View at Google Scholar
  19. L. A. Dobrzański and J. Trzaska, “Application of neural networks for the prediction of continuous cooling transformation diagrams,” Computational Materials Science, vol. 30, no. 3-4, pp. 251–259, 2004. View at Publisher · View at Google Scholar
  20. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989. View at Publisher · View at Google Scholar
  21. K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neural Networks, vol. 4, no. 2, pp. 251–257, 1991. View at Publisher · View at Google Scholar
  22. G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of Control, Signals, and Systems, vol. 2, no. 4, pp. 303–314, 1989. View at Publisher · View at Google Scholar
  23. M. Leshno, V. Ya. Lin, A. Pinkus, and S. Schocken, “Multilayer feedforward networks with a nonpolynomial activation function can approximate any function,” Neural Networks, vol. 6, no. 6, pp. 861–867, 1993. View at Publisher · View at Google Scholar
  24. G.-B. Huang, L. Chen, and C.-K. Siew, “Universal approximation using incremental constructive feedforward networks with random hidden nodes,” IEEE Transactions on Neural Networks, vol. 17, no. 4, pp. 879–892, 2006. View at Publisher · View at Google Scholar
  25. G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press, Wellesley, Mass, USA, 1996.