Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2011 (2011), Article ID 940634, 9 pages
http://dx.doi.org/10.1155/2011/940634
Research Article

TEM Study of High-Temperature Precipitation of Delta Phase in Inconel 718 Alloy

1IJL-SI2M UMR 7198 CNRS-Nancy Université-UPV Metz, École des Mines de Nancy, Parc de Saurupt, CS 14234, 54042 Nancy Cedex, France
2Institut Carnot CIRIMAT, Université de Toulouse, INP-ENSIACET, 4 allée Emile Monso, BP 44362, 31030 Toulouse Cedex 4, France

Received 31 March 2011; Accepted 12 May 2011

Academic Editor: Joseph Lai

Copyright © 2011 Moukrane Dehmas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. F. Paulonis, J. M. Oblak, and D. S. Duvall, “Precipitation in nickel-base alloy 718,” Trans. ASM, vol. 62, no. 3, pp. 611–622, 1969. View at Google Scholar · View at Scopus
  2. I. Kirman and D. H. Warrington, “The precipitation of Ni3Nb phases in a Ni-Fe-Cr-Nb alloy,” Metallurgical Transactions, vol. 1, no. 10, pp. 2667–2675, 1970. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Cozar and A. Pineau, “Morphology of y' and y" precipitates and thermal stability of inconel 718 type alloys,” Metallurgical Transactions, vol. 4, no. 1, pp. 47–59, 1973. View at Publisher · View at Google Scholar · View at Scopus
  4. J. M. Oblak, D. F. Paulonis, and D. S. Duvall, “Coherency strengthening in Ni base alloys hardened by DO22 γ′ precipitates,” Metallurgical Transactions, vol. 5, no. 1, pp. 143–153, 1974. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, “Some aspects of the precipitation of metastable intermetallic phases in INCONEL 718,” Metallurgical transactions. A, vol. 23, no. 7, pp. 2015–2028, 1992. View at Google Scholar · View at Scopus
  6. C. Slama, C. Servant, and G. Cizeron, “Aging of the Inconel 718 alloy between 500 and 750 °C,” Journal of Materials Research, vol. 12, no. 9, pp. 2298–2316, 1997. View at Google Scholar · View at Scopus
  7. A. Niang, B. Viguier, and J. Lacaze, “Some features of anisothermal solid-state transformations in alloy 718,” Materials Characterization, vol. 61, no. 5, pp. 525–534, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Yang, K. M. Chang, S. Mannan, and J. D. Barbadillo, “Superalloys 718, 625, 706 and various derivatives,” in Proceedings of the 6th International Symposium on Superalloys 718, 625, 706 and Derivatives, E. A. Loria, Ed., pp. 353–365, TMS, 1997.
  9. V. Beaubois, J. Huez, S. Coste, O. Brucelle, and J. Lacaze, “Short term precipitation kinetics of delta phase in strain free Inconel* 718 alloy,” Materials Science and Engineering, vol. 20, no. 8, pp. 1019–1026, 2004. View at Google Scholar
  10. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, “Precipitation of the δ-Ni3Nb phase in two nickel base superalloys,” Metallurgical Transactions A, vol. 19, no. 3, pp. 453–465, 1988. View at Publisher · View at Google Scholar
  11. A. Niang, J. Huez, J. Lacaze, and B. Viguier, “Characterizing precipitation defects in nickel based 718 alloy,” Materials Science Forum, vol. 636-637, pp. 517–522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. R. B. Li, M. Yao, W. C. Liu, and X. C. He, “Isolation and determination for δ, γ′ and γ″ phases in Inconel 718 alloy,” Scripta Materialia, vol. 46, no. 9, pp. 635–638, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Fang, S. J. Kennedy, L. Quan, and T. J. Hicks, “The structure and paramagnetism of Ni3Nb,” Journal of Physics: Condensed Matter, vol. 4, no. 10, article no. 007, pp. 2405–2414, 1992. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Boultif and D. Loueer, “Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method,” Journal of Applied Crystallography, vol. 24, no. 6, pp. 987–993, 1991. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Rodriguez-Carvajal, M. T. Fernandez-Diaz, and J. L. Martinez, “Neutron diffraction study on structural and magnetic properties of La 2NiO4,” Journal of Physics: Condensed Matter, vol. 3, no. 19, article no. 002, pp. 3215–3234, 1991. View at Publisher · View at Google Scholar · View at Scopus
  16. H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” Journal of Applied Crystallography, vol. 2, p. 65, 1969. View at Google Scholar · View at Scopus
  17. P. Nash and A. Nash, “The Nb-Ni (Niobium-Nickel) system,” Bulletin of Alloy Phase Diagrams, vol. 7, no. 2, pp. 124–130, 1986. View at Publisher · View at Google Scholar
  18. I. Kirman, “Precipitation in the Fe-Ni-Cr-Nb system,” Journal of the Iron and Steel Institute, vol. 12, pp. 1612–1618, 1969. View at Google Scholar · View at Scopus
  19. C. Boudias and D. Monceau, “CaRine Crystallography,” (1989–2003), http://pro.wanadoo.fr/carine.crystallography/.
  20. http://imagej.nih.gov/.
  21. J. P. Zhang, H. Q. Ye, K. H. Kuo, and S. Amelinckx, “High-resolution electron microscopy study of the domain structure in Ni//3Nb. II. Orientation and general domains,” Physica Status Solidi (A), vol. 93, no. 2, pp. 457–462, 1986. View at Google Scholar · View at Scopus
  22. C. L. Chen, W. Lu, Y. Y. Cui, L. L. He, and H. Q. Ye, “High-resolution image simulation of overlap structures in TiAl alloy,” Journal of Alloys and Compounds, vol. 468, no. 1-2, pp. 179–186, 2009. View at Publisher · View at Google Scholar