Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2012, Article ID 192731, 5 pages
http://dx.doi.org/10.1155/2012/192731
Research Article

Blue Phosphorescent Organic Light-Emitting Devices with the Emissive Layer of mCP:FCNIr(pic)

Department of Electronics Engineering, Dankook University, San 29, Anseo-dong, Cheonan, Chungnam 330-714, Republic of Korea

Received 15 February 2012; Accepted 17 April 2012

Academic Editor: Etienne Baranoff

Copyright © 2012 Ji Geun Jang and Hyun Jin Ji. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

New high-efficiency blue-light-emitting phosphorescent devices with 300 Å-thick emissive layer of N,N′-dicarbazolyl-3,5-benzene [mCP] doped with 10 vol.% bis[(3,5-difluoro-4-cyanophenyl)pyridine]iridium picolinate [FCNIr(pic)] were fabricated with the different treatments of hole and electron transport layers. In the experiments, a single layer of 1,1-bis-(di-4-polyaminophenyl)cyclohexane [TAPC] and a double layer of N,N′-di(1-naphthyl)-N,N′-diphenylbenzidine [NPB] and mCP were used as hole transport layers (HTLs). In addition, 500 Å-thick double layers of tris-[3-(3-pyridyl)mesityl]borane [3TPYMB] and 4,7-diphenyl-1,10-phenanthroline [Bphen] were used as electron transport layers (ETLs) with various thickness combination of 3TPYMB/Bphen. Among the fabricated devices, the one using TAPC as an HTL and 3TPYMB(100 Å)/Bphen(400 Å) as an ETL showed best electroluminescent characteristics with a maximum quantum efficiency of 13.3% and a luminance of 950 cd/m2 at 10 V. The color coordinates were (0.14, 0.22) on the Commission Internationale de I'Eclairage (CIE) chart, and the electroluminescent spectra showed the double-peak emissions at 458 nm and 483 nm.