Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2012 (2012), Article ID 395612, 9 pages
http://dx.doi.org/10.1155/2012/395612
Research Article

Synthesis and Characterization of Nickel-Alumina Composites from Recycled Nickel Powder

1Department of Pollution Control Technologies, Technological Educational Institute (TEI) of West Macedonia, Kila, 50100 Kozani, Greece
2School of Chemical Engineering, National Technical University of Athens (NTUA), 9 Iroon Polytechniou Street, 15773 Athens, Greece

Received 5 December 2011; Revised 17 January 2012; Accepted 18 January 2012

Academic Editor: Wen-Hua Sun

Copyright © 2012 V. G. Karayannis and A. K. Moutsatsou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Callister, Materials Science & Engineering: An Introduction, John Wiley & Sons, New York, NY, USA, 7th edition, 2007.
  2. T. Clyne and P. Withers, An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, UK, 1993.
  3. E. Marin, M. Lekka, F. Andreatta et al., “Electrochemical behaviour of Aluminum—fly ash composites prepared by powder metallurgy technique,” in Proceedings of the 4rd World of Coal Ash Conference (WOCA '11), pp. 1–16, Denver, Colo, USA, 2011.
  4. U. Martin, D. Ehinger, L. Krüger et al., “Cellular energy absorbing TRIP-Steel/Mg-PSZ composite: honeycomb structures fabricated by a new extrusion powder technology,” Advances in Materials Science and Engineering, vol. 2010, Article ID 269537, 6 pages, 2010. View at Publisher · View at Google Scholar
  5. A. Moutsatsou, G. Itskos, P. Vounatsos, N. Koukouzas, and C. Vasilatos, “Microstructural characterization of PM-Al and PM-Al/Si composites reinforced with lignite fly ash,” Materials Science and Engineering A, vol. 527, no. 18-19, pp. 4788–4795, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Gupta, “Symposium review: processing, properties and performance of composite materials,” JOM-Journal of the Minerals Metals and Materials Society, vol. 61, no. 3, pp. 42–44, 2009. View at Publisher · View at Google Scholar
  7. K. Kondoh, J. Umeda, and K. Kawabata, “Tribological analysis of Mg2Si particulates reinforced powder metallurgy magnesium alloy composites under oil lubrication condition,” Advances in Materials Science and Engineering, vol. 2009, Article ID 628737, 8 pages, 2009. View at Publisher · View at Google Scholar
  8. A. Agrawal and K. K. Sahu, “Problems, prospects and current trends of copper recycling in India: an overview,” Resources, Conservation and Recycling, vol. 54, no. 7, pp. 401–416, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Cui and L. Zhang, “Metallurgical recovery of metals from electronic waste: a review,” Journal of Hazardous Materials, vol. 158, no. 2-3, pp. 228–256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. K. K. Sahu, A. Agrawal, and B. D. Pandey, “Recent trends and current practices for secondary processing of zinc and lead. Part II: zinc recovery from secondary sources,” Waste Management and Research, vol. 22, no. 4, pp. 248–254, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. F. Shen, W. Y. Xue, and W. Y. Niu, “Recovery of Co(II) and Ni(II) from hydrochloric acid solution of alloy scrap,” Transactions of Nonferrous Metals Society of China, vol. 18, no. 5, pp. 1262–1268, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Avraamides, G. Senanayake, and R. Clegg, “Sulfur dioxide leaching of spent zinc-carbon-battery scrap,” Journal of Power Sources, vol. 159, no. 2, pp. 1488–1493, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Cohen, D. S. Shipley, A. R. Tong, S. J. G. Casaroli, and J. G. Petrie, “Precipitation of iron from concentrated chloride solutions: literature observations, challenges and preliminary experimental results,” Minerals Engineering, vol. 18, no. 13-14, pp. 1344–1347, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Habashi, “A short history of hydrometallurgy,” Hydrometallurgy, vol. 79, no. 1-2, pp. 15–22, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Moutsatsou, V. Karayannis, and C. Sotiriou, “Optimization of ferrous scrap dissolution for the recovery of Fe, Ni, Cr and Mo powders by a hydrometallurgical process,” in Proceedings of the 3rd International Symposium on Hydrometallurgy-Hydromet, pp. 1–18, Falmouth, UK, 2007.
  16. V. G. Karayannis and A. Moutsatsou, “Ferrous scrap yields powders for PM & MMCs,” Metal Powder Report, vol. 55, no. 12, pp. 33–36, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. Q.-X. Tang, S. Ukai, A. Minami, and S. Hayashi, “γ’ precipitation and growth kinetics in mechanically alloyed Ni–Al,” Advances in Materials Science and Engineering, vol. 2011, Article ID 137387, 7 pages, 2011. View at Google Scholar
  18. C. G. Hjorth, “HIP powder metal near-net shapes for demanding environment and applications,” Journal of Iron and Steel Research International, vol. 14, no. 5, pp. 121–125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. B. A. Pint, J. R. DiStefano, and I. G. Wright, “Oxidation resistance: one barrier to moving beyond Ni-base superalloys,” Materials Science and Engineering A, vol. 415, no. 1-2, pp. 255–263, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Lekka, N. Kouloumbi, M. Gajo, and P. L. Bonora, “Corrosion and wear resistant electrodeposited composite coatings,” Electrochimica Acta, vol. 50, no. 23, pp. 4551–4556, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. A. G. Evans, D. R. Clarke, and C. G. Levi, “The influence of oxides on the performance of advanced gas turbines,” Journal of the European Ceramic Society, vol. 28, no. 7, pp. 1405–1419, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Fourmond, G. Da Rold, F. Rousseau et al., “Characterisation of thermal barrier coatings and ultra high temperature composites deposited in a low pressure plasma reactor,” Journal of the European Ceramic Society, vol. 31, no. 13, pp. 2295–2302, 2011. View at Publisher · View at Google Scholar
  23. C. Lynch, Ed., CRC Handbook of Materials Science, CRC Press, Boca Raton, Fla, USA, 1974.
  24. G. Shanmugavelayutham and A. Kobayashi, “Mechanical properties and oxidation behaviour of plasma sprayed functionally graded zirconia-alumina thermal barrier coatings,” Materials Chemistry and Physics, vol. 103, no. 2-3, pp. 283–289, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. D. E. Aldrich, Z. Fan, and P. Mummery, “Processing, microstructure, and physical properties of interpenetrating Al2O3/Ni composites,” Materials Science and Technology, vol. 16, no. 7-8, pp. 747–752, 2000. View at Google Scholar · View at Scopus
  26. A. E. Castro Luna and M. E. Iriarte, “Carbon dioxide reforming of methane over a metal modified Ni-Al2O3 catalyst,” Applied Catalysis A, vol. 343, no. 1-2, pp. 10–15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. Q. Feng, T. Li, H. Teng et al., “Investigation on the corrosion and oxidation resistance of Ni-Al2O3 nano-composite coatings prepared by sediment co-deposition,” Surface and Coatings Technology, vol. 202, no. 17, pp. 4137–4144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. C. Kuiry, S. Wannaparhun, N. B. Dahotre, and S. Seal, “In-situ formation of Ni-alumina nanocomposite during laser processing,” Scripta Materialia, vol. 50, no. 9, pp. 1237–1240, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Li, F. Li, and K. Hu, “Preparation of Ni/Al2O3 nanocomposite powder by high-energy ball milling and subsequent heat treatment,” Journal of Materials Processing Technology, vol. 147, no. 2, pp. 236–240, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. Q. Yan, G. Y. Wang, Z. Huang, and D. Jiang, “A microstructure study of Ni/Al2O3 composite ceramics,” Journal of Alloys and Compounds, vol. 467, no. 1-2, pp. 438–443, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Lourdin, D. Juvé, and D. Tréheux, “Nickel-alumina bonds: mechanical properties related to interfacial chemistry,” Journal of the European Ceramic Society, vol. 16, no. 7, pp. 745–752, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. S. V. Eremeev, S. Schmauder, S. Hocker, and S. E. Kulkova, “Ab-initio investigation of Ni(Fe)/ZrO2(0 0 1) and Ni-Fe/ZrO2(0 0 1) interfaces,” Surface Science, vol. 603, no. 14, pp. 2218–2225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. H. A. Bruck and B. H. Rabin, “Evaluating microstructural and damage effects in rule-of-mixtures predictions of the mechanical properties of Ni-Al2O3 composites,” Journal of Materials Science, vol. 34, no. 9, pp. 2241–2251, 1999. View at Publisher · View at Google Scholar · View at Scopus