Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2012 (2012), Article ID 413638, 5 pages
http://dx.doi.org/10.1155/2012/413638
Research Article

Photocatalytic Properties of Columnar Nanostructured Films Fabricated by Sputtering Ti and Subsequent Annealing

Advanced Materials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

Received 6 January 2012; Accepted 20 February 2012

Academic Editor: Guohua Jiang

Copyright © 2012 Zhengcao Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. W. Perelo, “Review: in situ and bioremediation of organic pollutants in aquatic sediments,” Journal of Hazardous Materials, vol. 177, no. 1–3, pp. 81–89, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. J. R. Dominguez, J. Beltran, and O. Rodriguez, “Vis and UV photocatalytic detoxification methods (using TiO2, TiO2/H2O2, TiO2/O3, TiO2/S2O82-,” Catalysis Today, vol. 101, no. 3-4, pp. 389–395, 2005. View at Publisher · View at Google Scholar
  3. P. Saritha, C. Aparna, V. Himabindu, and Y. Anjaneyulu, “Comparison of various advanced oxidation processes for the degradation of 4-chloro-2 nitrophenol,” Journal of Hazardous Materials, vol. 149, no. 3, pp. 609–614, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. G. Neelavannan, M. Revathi, and C. Ahmed Basha, “Photocatalytic and electrochemical combined treatment of textile wash water,” Journal of Hazardous Materials, vol. 149, no. 2, pp. 371–378, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Mounir, M. N. Pons, O. Zahraa, A. Yaacoubi, and A. Benhammou, “Discoloration of a red cationic dye by supported TiO2 photocatalysis,” Journal of Hazardous Materials, vol. 148, no. 3, pp. 513–520, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Malato, J. Blanco, A. Vidal, and C. Richter, “Photocatalysis with solar energy at a pilot-plant scale: an overview,” Applied Catalysis B, vol. 37, no. 1, pp. 1–15, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Yang, C. Gong, T. Peng, K. Deng, and L. Zan, “High photocatalytic degradation activity of the polyvinyl chloride (PVC)-vitamin C (VC)-TiO2 nano-composite film,” Journal of Hazardous Materials, vol. 178, no. 1–3, pp. 152–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surface Science Reports, vol. 63, no. 12, pp. 515–582, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. P. K. Song, Y. Irie, and Y. Shigesato, “Crystallinity and photocatalytic activity of TiO2 films deposited by reactive sputtering with radio frequency substrate bias,” Thin Solid Films, vol. 496, no. 1, pp. 121–125, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout, and J. L. Gole, “Enhanced nitrogen doping in TiO2 nanoparticles,” Nano Letters, vol. 3, no. 8, pp. 1049–1051, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Li and G. Song, “Photocatalytic degradation of organic pollutants and detection of chemical oxygen demand by fluorescence methods,” Sensors and Actuators B, vol. 137, no. 2, pp. 432–436, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Pihosh, I. Turkevych, J. Ye et al., “Photocatalytic properties of TiO2 nanostructures fabricated by means of glancing angle deposition and anodization,” Journal of the Electrochemical Society, vol. 156, no. 9, pp. K160–K165, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Ikeda, H. Sakai, R. Baba, K. Hashimoto, and A. Fujishima, “Photocatalytic reactions involving radical chain reactions using microelectrodes,” Journal of Physical Chemistry B, vol. 101, no. 14, pp. 2617–2620, 1997. View at Google Scholar · View at Scopus
  14. M. Farooq, I. A. Raja, and A. Pervez, “Photocatalytic degradation of TCE in water using TiO2 catalyst,” Solar Energy, vol. 83, no. 9, pp. 1527–1533, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Q. Zhou, Z. C. Li, J. Ni, and Z. J. Zhang, “A simple model to describe the rule of glancing angle deposition,” Materials Transactions, vol. 52, no. 3, pp. 469–473, 2011. View at Publisher · View at Google Scholar
  16. Q. Zhou, Z. C. Li, Y. Yang, and Z. J. Zhang, “Arrays of aligned, single crystalline silver nanorods for trace amount detection,” Journal of Physics D, vol. 41, no. 15, Article ID 152007, 2008. View at Publisher · View at Google Scholar
  17. K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” Journal of Vacuum Science and Technology B, vol. 16, no. 3, pp. 1115–1122, 1998. View at Google Scholar · View at Scopus
  18. Y.-P. Zhao, D.-X. Ye, G.-C. Wang, and T.-M. Lu, “Designing nanostructures by glancing angle deposition,” Nanotubes and Nanowires, vol. 5219, pp. 59–73, 2003. View at Publisher · View at Google Scholar
  19. Y. Q. Wang, Z. C. Li, X. Sheng, and Z. J. Zhang, “Synthesis and optical properties of V2O5 nanorods,” Journal of Chemical Physics, vol. 126, no. 16, Article ID 164701, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. C. Li, Y. Zhu, Q. Zhou, J. Ni, and Z. J. Zhang, “Photocatalytic properties of TiO2 thin films obtained by glancing angle deposition,” Applied Surface Science, vol. 258, no. 7, pp. 2766–2770, 2012. View at Google Scholar
  21. Z. C. Li, L. P. Xing, N. Zhang, Y. Yang, and Z. J. Zhang, “Preparation and photocatalytic property of TiO2 columnar nanostructure films,” Materials Transactions, vol. 52, no. 10, pp. 1939–1942, 2011. View at Publisher · View at Google Scholar