Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2012, Article ID 434605, 9 pages
http://dx.doi.org/10.1155/2012/434605
Research Article

Experimental and Theoretical Studies on the Effect of Die Temperature on the Quality of the Products in High-Pressure Die-Casting Process

HST Department, MÄlardalen University, P.O. Box 883, 721 23, Västerås, Sweden

Received 9 April 2012; Revised 30 May 2012; Accepted 20 June 2012

Academic Editor: Rui Vilar

Copyright © 2012 Mohammad Sadeghi and Jafar Mahmoudi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. Dargusch, G. Dour, N. Schauer, C. M. Dinnis, and G. Savage, “The influence of pressure during solidification of high pressure die cast aluminium telecommunications components,” Journal of Materials Processing Technology, vol. 180, no. 1–3, pp. 37–43, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. W. Chen and M. Z. Jahedi, “Die erosion and its effect on soldering formation in high pressure die casting of aluminium alloys,” Materials and Design, vol. 20, no. 6, pp. 303–309, 1999. View at Google Scholar · View at Scopus
  3. P. W. Cleary, J. Ha, M. Prakash, and T. Nguyen, “3D SPH flow predictions and validation for high pressure die casting of automotive components,” Applied Mathematical Modelling, vol. 30, no. 11, pp. 1406–1427, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. K. J. Laws, B. Gun, and M. Ferry, “Effect of die-casting parameters on the production of high quality bulk metallic glass samples,” Materials Science and Engineering A, vol. 425, no. 1-2, pp. 114–120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. D. McBride, T. N. Croft, and M. Cross, “A coupled finite volume method for the computational modelling of mould filling in very complex geometries,” Computers & Fluids, vol. 37, no. 2, pp. 170–180, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. C. Tai and J. C. Lin, “The optimal position for the injection gate of a die-casting die,” Journal of Materials Processing Technology, vol. 86, no. 1–3, pp. 87–100, 1998. View at Google Scholar · View at Scopus
  7. S. W. Youn, C. G. Kang, and P. K. Seo, “Thermal fluid/solidification analysis of automobile part by horizontal squeeze casting process and experimental evaluation,” Journal of Materials Processing Technology, vol. 146, no. 3, pp. 294–302, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. X. Zhou, L. L. Chen, D. M. Liao, and R. X. Liu, “High pressure diecasting module of InteCAST software and its applications,” Journal of Materials Processing Technology, vol. 192-193, pp. 249–254, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Yue, G. Wang, F. Yin, Y. Wang, and J. Yang, “Application of an integrated CAD/CAE/CAM system for die casting dies,” Journal of Materials Processing Technology, vol. 139, no. 1–3, pp. 465–468, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Kermanpur, S. Mahmoudi, and A. Hajipour, “Numerical simulation of metal flow and solidification in the multi-cavity casting moulds of automotive components,” Journal of Materials Processing Technology, vol. 206, no. 1–3, pp. 62–68, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Schneiderbauer, S. Pirker, C. Chimani, and R. Kretz, “Studies on flow characteristics at high-pressure die-casting,” in Proceedings of the 3rd International Conference on Advances in Solidification Processes.
  12. M. F. V. T. Pereira, M. Williams, and W. B. du Preez, “Reducing non value adding aluminium alloy in production of parts through high pressure die casting,” in Proceedings of the Light Metals Conference, 2010.
  13. J. K. Rai, A. M. Lajimi, and P. Xirouchakis, “An intelligent system for predicting HPDC process variables in interactive environment,” Journal of Materials Processing Technology, vol. 203, no. 1–3, pp. 72–79, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. B. S. Sung and I. S. Kim, “The molding analysis of automobile parts using the die-casting system,” Journal of Materials Processing Technology, vol. 201, pp. 635–639, 2008. View at Google Scholar
  15. V. Ilotte, “Die casting for chassis components,” in Proceedings of the 4th International High Tech Die Casting Conference, Montichiari, Italy, April 2008.
  16. Z. Brown, C. Barnes, J. Bigelow, and U. S. Contech, “Squeeze cast automotive applications and design considerations,” in Proceedings of the 4th International High Tech Die Casting Conference, Montichiari, Italy, April 2008.
  17. J. P. Papai, Contact heat transfer coefficients in aluminum alloy die casting: an experimental and numerical investigation? [Ph.D. thesis], The Ohio State University, 1994.