Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2012 (2012), Article ID 452383, 11 pages
http://dx.doi.org/10.1155/2012/452383
Research Article

Electrical Properties of a CeO2-Mix System Elaborated at 600C

1Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université du Sud Toulon-Var, BP 20132, 83957 La Garde Cedex, France
2Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Morocco

Received 29 July 2011; Accepted 26 December 2011

Academic Editor: V. P. S. Awana

Copyright © 2012 Lamia Bourja et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Bourja, B. Bakiz, A. Benlhachemi et al., “Structural, microstructural and surface properties of a specific CeO2-Bi2O3 multiphase system obtained at 600°C,” Journal of Solid State Chemistry, vol. 184, no. 3, pp. 608–614, 2011. View at Publisher · View at Google Scholar
  2. J. Kašpar, P. Fornasiero, and M. Graziani, “Use of CeO2-based oxides in the three-way catalysis,” Catalysis Today, vol. 50, no. 2, pp. 285–298, 1999. View at Google Scholar · View at Scopus
  3. A. Trovarelli, “Catalytic properties of ceria and CeO2-containing materials,” Catalysis Reviews, vol. 38, no. 4, pp. 439–520, 1996. View at Google Scholar · View at Scopus
  4. A. Trovarelli, C. Leitenburg, M. Boaro, and G. Dolcetti, “The utilization of ceria in industrial catalysis,” Catalysis Today, vol. 50, no. 2, pp. 353–367, 1999. View at Google Scholar · View at Scopus
  5. A. Tschope, W. Liu, M. F. Stephanopoulos, and J. Y. Ying, “Redox activity of nonstoichiometric cerium oxide-based nanocrystalline catalysts,” Journal of Catalysis, vol. 157, no. 1, pp. 42–50, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Masui, K. Minami, K. Koyabu, and N. Imanaka, “Synthesis and characterization of new promoters based on CeO2-ZrO2-Bi2O3 for automotive exhaust catalysts,” Catalysis Today, vol. 117, no. 1–3, pp. 187–192, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Zheng, X. Zhang, Z. Fang, X. Wang, S. Wang, and S. Wu, “Characterization and catalysis studies of CuO/CeO2 model catalysts,” Catalysis Communications, vol. 7, no. 9, pp. 701–704, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. O. Demoulin, M. Navez, J.-L. Mugabo, and P. Ruiz, “The oxidizing role of CO2 at mild temperature on ceria-based catalysts,” Applied Catalysis B, vol. 70, no. 1-4, pp. 284–293, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Aneggi, M. Boaro, C. D. Leitenburg, G. Dolcetti, and A. Trovarelli, “Insights into the redox properties of ceria-based oxides and their implications in catalysis,” Journal of Alloys and Compounds, vol. 408-412, pp. 1096–1102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Mogensen, N. M. Sammes, and G. A. Tompsett, “Physical, chemical and electrochemical properties of pure and doped ceria,” Solid State Ionics, vol. 129, no. 1, pp. 63–94, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. R. N. Blumenthal and R. K. Sharma, “Electronic conductivity in nonstoichiometric cerium dioxide,” Journal of Solid State Chemistry, vol. 13, no. 4, pp. 360–364, 1975. View at Google Scholar · View at Scopus
  12. L. Aneflous, J. A. Musso, S. Villain, J. R. Gavarri, and H. Benyaich, “Effects of temperature and Nd composition on non-linear transport properties in substituted Ce1-xNdxO2-δ cerium dioxides,” Journal of Solid State Chemistry, vol. 177, no. 3, pp. 856–865, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Shuk, M. Greenblatt, and M. Croft, “Hydrothermal synthesis and properties of Ce1-xEuxO2-δ solid solutions,” Journal of Alloys and Compounds, vol. 303-304, pp. 465–471, 2000. View at Google Scholar · View at Scopus
  14. B. Matovic, Z. Dohcevic-Mitrovic, M. Radovic et al., “Synthesis and characterization of ceria based nanometric powders,” Journal of Power Sources, vol. 193, no. 1, pp. 146–149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. R. O. Fuentes and R. T. Baker, “Synthesis and properties of Gadolinium-doped ceria solid solutions for IT-SOFC electrolytes,” International Journal of Hydrogen Energy, vol. 33, no. 13, pp. 3480–3484, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Jasinski, “Electrical properties of nanocrystalline Sm-doped ceria ceramics,” Solid State Ionics, vol. 177, no. 26–32, pp. 2509–2512, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Shuk, M. Greenblatt, and M. Croft, “Hydrothermal synthesis and properties of mixed conducting Ce1-xTbxO2-δ solid solutions,” Chemistry of Materials, vol. 11, no. 2, pp. 473–479, 1999. View at Google Scholar · View at Scopus
  18. L. G. Sillen, Arkiv for Kemi, Mineralogi Och Geologi, vol. 12A, 1937.
  19. V. Fruth, A. Ianculescu, D. Berger et al., “Synthesis, structure and properties of doped Bi2O3,” Journal of the European Ceramic Society, vol. 26, no. 14, pp. 3011–3016, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. N. M. Sammes, G. A. Tompsett, H. Näfe, and F. Aldinger, “Bismuth based oxide electrolytes—structure and ionic conductivity,” Journal of the European Ceramic Society, vol. 19, no. 10, pp. 1801–1826, 1999. View at Google Scholar · View at Scopus
  21. L. E. Depero and L. Sangaletti, “Structural disorder and ionic conduction: the case of Bi2O3,” Journal of Solid State Chemistry, vol. 122, no. 2, pp. 439–443, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. C. N. R. Rao, G. V. S. Rao, and S. Ramdas, “Phase transformations and electrical properties of bismuth sesquioxide,” The Journal of Physical Chemistry, vol. 73, no. 3, pp. 672–675, 1969. View at Publisher · View at Google Scholar · View at Scopus
  23. H. A. Harwig and A. G. Gerards, “Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide,” Journal of Solid State Chemistry, vol. 26, no. 3, pp. 265–274, 1978. View at Google Scholar · View at Scopus
  24. P. Shuk, H.-D. Wiemhöfer, U. Guth, W. Göpel, and M. Greenblatt, “Oxide ion conducting solid electrolytes based on Bi2O3,” Solid State Ionics, vol. 89, no. 3-4, pp. 179–196, 1996. View at Google Scholar · View at Scopus
  25. O. Monnereau, L. Tortet, P. L. lewellyn, F. Rouquerol, and G. Vacquier, “Synthesis of Bi2O3 by controlled transformation rate thermal analysis: a new route for this oxide?” Solid State Ionics, vol. 157, no. 1–4, pp. 163–169, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Schröder and N. Bagdassarov, “Phase transitions and electrical properties of Bi2O3 up to 2.5 GPa,” Solid State Communications, vol. 147, no. 9-10, pp. 374–376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Schröder, N. Bagdassarov, F. Ritter, and L. Bayarjargal, “Temperature dependence of Bi2O3 structural parameters close to the α -δ pphase transition,” Phase Transitions, vol. 83, no. 5, pp. 311–325, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Hull, S. T. Norberg, M. Tucker, S. Eriksson, C. Mohn, and S. Stølen, “Neutron total scattering study of the δ and β phases of Bi2O3,” Dalton Transactions, no. 40, pp. 8737–8745, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Dikmen, P. Shuk, and M. Greenblatt, “Hydrothermal synthesis and properties of Ce1-xBixO2-δsolid solutions,” Solid State Ionics, vol. 112, no. 3-4, pp. 299–307, 1998. View at Google Scholar · View at Scopus
  30. X. L. Chen and W. Eysel, “The stabilization of β-Bi2O3 by CeO2,” Journal of Solid State Chemistry, vol. 127, no. 1, pp. 128–130, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Sardar, H. Y. Playford, R. J. Darton et al., “Nanocrystalline cerium-bismuth oxides: synthesis, structural characterization, and redox properties,” Chemistry of Materials, vol. 22, no. 22, pp. 6191–6201, 2010. View at Publisher · View at Google Scholar
  32. M. J. Godinho, R. F. Gonçalves, L. P. S Santos, J. A. Varela, E. Longo, and E. R. Leite, “Room temperature co-precipitation of nanocrystalline CeO2 and Ce0.8Gd0.2O1.9-δ powder,” Materials Letters, vol. 61, no. 8-9, pp. 1904–1907, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. J. G. Li, T. Ikegami, Y. Wang, and T. Mori, “Nanocrystalline Ce1-xYxO2-x/2 (0x0.35) oxides via carbonate precipitation: synthesis and characterization,” Journal of Solid State Chemistry, vol. 168, no. 1, pp. 52–59, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Ye, T. Mori, D. R. Ou, J. Zou, and J. Drennan, “Microstructural characterization of terbium-doped ceria,” Materials Research Bulletin, vol. 42, no. 5, pp. 943–949, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Ikuma, K. Takao, M. Kamiya, and E. Shimada, “X-ray study of cerium oxide doped with gadolinium oxide fired at low temperatures,” Materials Science and Engineering B, vol. 99, no. 1–3, pp. 48–51, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. P. Fu and S. H. Chen, “Preparation and characterization of neodymium-doped ceria electrolyte materials for solid oxide fuel cells,” Ceramics International, vol. 36, no. 2, pp. 483–490, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Johnson, Zview, Impedance software, Version 2.1a, Scribner Associates Inc, (1990–1998).
  38. J. R. Macdonald, “Double layer capacitance and relaxation in electrolytes and solids,” Transactions of the Faraday Society, vol. 66, pp. 943–958, 1970. View at Publisher · View at Google Scholar · View at Scopus
  39. J. R. Macdonald, “Electrical response of materials containing space charge with discharge at the electrodes,” The Journal of Chemical Physics, vol. 54, no. 5, pp. 2026–2050, 1972, Erratum: electrical response of materials containing space charge with discharge at the electrodes, The Journal of Chemical Physics, vol. 56, article, 681, 1972. View at Google Scholar · View at Scopus
  40. J. R. Macdonald, “Impedance spectroscopy: old problems and new developments,” Electrochimica Acta, vol. 35, no. 10, pp. 1483–1492, 1990. View at Google Scholar · View at Scopus
  41. J. R. Macdonald, “Characterization of the electrical response of high resistivity ionic and dielectric solid materials by immittance spectroscopy,” in Impedance Spectroscopy—Theory, Experiment, and Applications, E. Barsoukov and J. R. Macdonald, Eds., pp. 264–282, John Wiley & Sons, New Jersey, NJ, USA, 2nd edition, 2005. View at Google Scholar
  42. C. Ho, I. D. Raistrick, and R. A. Huggins, “Application of AC techniques to the study of lithium diffusion in tungsten trioxide thin film,” Journal of the Electrochemical Society, vol. 127, no. 2, pp. 343–349, 1980. View at Google Scholar · View at Scopus
  43. B. P. Mandal, S. K. Deshpande, and A. K. Tyagi, “Ionic conductivity enhancement in Gd2Zr2O7 pyrochlore by Nd doping,” Journal of Materials Research, vol. 23, no. 4, pp. 911–916, 2008. View at Publisher · View at Google Scholar · View at Scopus