Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2012, Article ID 536853, 5 pages
http://dx.doi.org/10.1155/2012/536853
Research Article

Preparation and Properties of Ag-Containing Diamond-Like Carbon Films by Magnetron Plasma Source Ion Implantation

1Industrial Technology Center of Nagasaki, Applied Technology Division, Omura, Nagasaki 856-0026, Japan
2Department of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt, Germany

Received 27 April 2011; Revised 31 July 2011; Accepted 2 August 2011

Academic Editor: Robert G. Elliman

Copyright © 2012 K. Baba et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. R. Conrad and T. Castagna, “Plasma Source Ion Implantation for Surface Modification,” Bulletin of the American Physical Society, vol. 31, p. 1429, 1986. View at Google Scholar
  2. J. R. Conrad, “Sheath thickness and potential profiles of ion-matrix sheaths for cylindrical and spherical electrodes,” Journal of Applied Physics, vol. 62, no. 3, pp. 777–779, 1987. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Tendys, I. J. Donnelly, M. J. Kenny, and J. T. A. Pollock, “Plasma immersion ion implantation using plasmas generated by radio frequency techniques,” Applied Physics Letters, vol. 53, no. 22, pp. 2143–2145, 1988. View at Publisher · View at Google Scholar · View at Scopus
  4. K. C. Walter, R. A. Dood, and J. R. Conrad, “Corrosion behavior of nitrogen implanted aluminum,” Nuclear Instruments and Methods in Physics Research Section B, vol. 106, no. 1–4, pp. 522–526, 1995. View at Google Scholar · View at Scopus
  5. A. Chen, X. Qiu, K. Sridharan et al., “Chromium plating pollution source reduction by plasma source ion implantation,” Surface and Coatings Technology, vol. 82, no. 3, pp. 305–310, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Y. Tang, P. K. Chu, S. Y. Wang, K. W. Chow, and X. F. Wang, “Methane and nitrogen plasma immersion ion implantation of titanium metal,” Surface and Coatings Technology, vol. 103-104, pp. 248–251, 1998. View at Google Scholar
  7. S. Han, H. Kim, Y. Lee, J. Lee, and S.-G. Kim, “Plasma source ion implantation of nitrogen, carbon and oxygen into Ti-6A1-4V alloy,” Surface and Coatings Technology, vol. 82, no. 3, pp. 270–276, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. K. C. Walter, M. Nastasi, N. P. Baker et al., “Advances in PSII techniques for surface modification,” Surface and Coatings Technology, vol. 103-104, no. 1, pp. 205–211, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Baba and R. Hatada, “Deposition of diamond-like carbon films on polymers by plasma source ion implantation,” Thin Solid Films, vol. 506-507, pp. 55–58, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Chen, J. Blanchard, J. R. Conrad, and R. A. Dodd, “Structure and wear properties of carbon implanted 304 stainless steel using plasma source ion implantation,” Surface and Coatings Technology, vol. 53, no. 3, pp. 267–274, 1992. View at Google Scholar · View at Scopus
  11. J. Chen, J. R. Conrad, and R. A. Dodd, “Methane plasma source ion implantation (PSII) for improvement of tribological and corrosion properties,” Journal of Materials Processing Technology, vol. 49, no. 1-2, pp. 115–124, 1995. View at Google Scholar · View at Scopus
  12. K. Baba and R. Hatada, “Preparation and properties of metal-containing diamond-like carbon films by magnetron plasma source ion implantation,” Surface and Coatings Technology, vol. 196, no. 1–3, pp. 207–210, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Baba and R. Hatada, “Preparation and properties of metal containing diamond-like carbon films by magnetron plasma source ion implantation,” Surface and Coatings Technology, vol. 158-159, pp. 373–376, 2002. View at Google Scholar
  14. C. P. Klages and R. Memming, “Microstructure and physical properties of metal-containing hydrogenated carbon films,” Materials Science Forum, vol. 52-53, p. 609, 1990. View at Google Scholar
  15. C. Donnet, “Recent progress on the tribology of doped diamond-like and carbon alloy coatings: a review,” Surface and Coatings Technology, vol. 100-101, no. 1–3, pp. 180–186, 1998. View at Google Scholar · View at Scopus
  16. A. A. Voevodin, S. V. Prasad, and J. S. Zabinski, “Nanocrystalline carbide/amorphous carbon composites,” Journal of Applied Physics, vol. 82, no. 2, pp. 855–858, 1997. View at Google Scholar · View at Scopus
  17. H. W. Choi, J. H. Choi, K. R. Lee, J. P. Ahn, and K. H. Oh, “Structure and mechanical properties of Ag-incorporated DLC films prepared by a hybrid ion beam deposition system,” Thin Solid Films, vol. 516, no. 2–4, pp. 248–251, 2007. View at Google Scholar
  18. C. P. Lungu, I. Mustata, G. Musa et al., “Formation of nanostructured Re-Cr-Ni diffusion barrier coatings on Nb superalloys by TVA method,” Surface and Coatings Technology, vol. 200, no. 1-4, pp. 399–402, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. J. L. Endrino, R. E. Galindo, H.-S. Zhang et al., “Structure and properties of silver-containing a-C(H) films deposited by plasma immersion ion implantation,” Surface and Coatings Technology, vol. 202, no. 15, pp. 3675–3682, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. H. W. Choi, R. H. Dauskardt, S.-C. Lee, K. R. Lee, J. P. Ahn, and K. H. Oh, “Characteristic of silver doped DLC films on surface properties and protein adsorption,” Diamond and Related Materials, vol. 17, no. 3, pp. 252–257, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Wang, N. Huang, C. J. Pan et al., “Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ion implantation—deposition,” Surface and Coatings Technology, vol. 186, no. 1-2, pp. 299–304, 2004. View at Google Scholar
  22. K. Baba and R. Hatada, “Deposition and characterization of Ti- and W-containing diamond-like carbon films by plasma source ion implantation,” Surface and Coatings Technology, vol. 169-170, pp. 287–290, 2003. View at Google Scholar
  23. A.-Y. Wang, K.-R. Lee, J.-P. Ahn, and J. H. Han, “Structure and mechanical properties of W incorporated diamond-like carbon films prepared by a hybrid ion beam deposition technique,” Carbon, vol. 44, no. 9, pp. 1826–1832, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Robertson, “Diamond-like amorphous carbon,” Materials Science and Engineering, vol. 37, pp. 129–281, 2002. View at Google Scholar
  25. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Physical Review B, vol. 61, no. 20, pp. 14095–14107, 2000. View at Google Scholar · View at Scopus
  26. C. Casiraghi, A. C. Ferrari, and J. Robertson, “Raman spectroscopy of hydrogenated amorphous carbons,” Physical Review B, vol. 72, Article ID 085401, 14 pages, 2005. View at Google Scholar