Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2012 (2012), Article ID 726921, 18 pages
http://dx.doi.org/10.1155/2012/726921
Review Article

Mn-Rich Nanostructures in : Fabrication, Microstructure, and Magnetic Properties

Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

Received 22 April 2012; Accepted 18 July 2012

Academic Editor: Rupesh S. Devan

Copyright © 2012 Ying Jiang and Yong Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. N. Baibich, J. M. Broto, A. Fert et al., “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,” Physical Review Letters, vol. 61, no. 21, pp. 2472–2475, 1988. View at Publisher · View at Google Scholar · View at Scopus
  2. S. A. Wolf, D. D. Awschalom, R. A. Buhrman et al., “Spintronics: a spin-based electronics vision for the future,” Science, vol. 294, no. 5546, pp. 1488–1495, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. D. Park, A. Wilson, A. T. Hanbicki et al., “Magnetoresistance of Mn:Ge ferromagnetic nanoclusters in a diluted magnetic semiconductor matrix,” Applied Physics Letters, vol. 78, no. 18, pp. 2739–2741, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. D. Park, A. T. Hanbicki, S. C. Erwin et al., “A group-IV ferromagnetic semiconductor: MnxGe1-x,” Science, vol. 295, no. 5555, pp. 651–654, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Cho, S. Choi, S. C. Hong et al., “Ferromagnetism in Mn-doped Ge,” Physical Review B, vol. 66, no. 3, Article ID 033303, 3 pages, 2002. View at Google Scholar · View at Scopus
  6. A. Stroppa, S. Picozzi, A. Continenza, and A. J. Freeman, “Electronic structure and ferromagnetism of Mn-doped group-IV semiconductors,” Physical Review B, vol. 68, no. 15, Article ID 155203, 9 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Biegger, L. Stäheli, M. Fonin, U. Rüdiger, and Y. S. Dedkov, “Intrinsic ferromagnetism versus phase segregation in Mn-doped Ge,” Journal of Applied Physics, vol. 101, no. 10, Article ID 103912, 5 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Dietl, “A ten-year perspective on dilute magnetic semiconductors and oxides,” Nature Materials, vol. 9, no. 12, pp. 965–974, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Wang, J. Zou, Z. Zhao, X. Han, X. Zhou, and K. L. Wang, “Mn behavior in Ge0.96 Mn0.04 magnetic thin films grown on Si,” Journal of Applied Physics, vol. 103, no. 6, Article ID 066104, 3 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Ottaviano, M. Passacantando, A. Verna et al., “Microscopic investigation of the structural and electronic properties of ion implanted Mn-Ge alloys,” Physica Status Solidi (A) Applications and Materials, vol. 204, no. 1, pp. 136–144, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Wang, J. Zou, Z. Zhao, X. Han, X. Zhou, and K. L. Wang, “Direct structural evidences of Mn11Ge8 and Mn5Ge2 clusters in Ge0.96Mn0.04 thin films,” Applied Physics Letters, vol. 92, no. 10, Article ID 101913, 3 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. J.-S. Kang, G. Kim, S. C. Wi et al., “Spatial chemical inhomogeneity and local electronic structure of Mn-doped Ge ferromagnetic semiconductors,” Physical Review Letters, vol. 94, no. 14, Article ID 147202, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Ottaviano, A. Continenza, G. Profeta et al., “Room-temperature ferromagnetism in Mn-implanted amorphous Ge,” Physical Review B, vol. 83, no. 13, Article ID 134426, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Wang, F. Xiu, Y. Wang et al., “Mn-rich clusters in GeMn magnetic semiconductors: structural evolution and magnetic property,” Journal of Alloys and Compounds, vol. 508, no. 2, pp. 273–277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Ahlers, D. Bougeard, N. Sircar et al., “Magnetic and structural properties of GexMn1-x films: precipitation of intermetallic nanomagnets,” Physical Review B, vol. 74, no. 21, Article ID 214411, 8 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Wang, Y. Wang, F. Xiu et al., “Effect of Mn concentration and growth temperature on nanostructures and magnetic properties of Ge1-xMnx grown on Si,” Journal of Crystal Growth, vol. 312, no. 20, pp. 3034–3039, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Xiu, Y. Wang, J. Kim et al., “Electric-field-controlled ferromagnetism in high-Curie-temperature Mn0.05Ge0.95 quantumdots,” Nature Materials, vol. 9, no. 4, pp. 337–344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Xiu, Y. Wang, X. Kou et al., “Synthesis of high-curie-temperature Fe0.02Ge0.98 quantum dots,” Journal of the American Chemical Society, vol. 132, no. 33, pp. 11425–11427, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Wang, F. Xiu, Y. Wang et al., “Coherent magnetic semiconductor nanodot arrays,” Nanoscale Research Letters, vol. 6, no. 1, pp. 1–8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Wang, Z. Liao, H. Xu et al., “Structural evolution of GeMn/Ge superlattices grown by molecular beam epitaxy under different growth conditions,” Nanoscale Research Letters, vol. 6, article 624, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Xiu, Y. Wang, K. Wong et al., “MnGe magnetic nanocolumns and nanowells,” Nanotechnology, vol. 21, no. 25, Article ID 255602, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. J. Cho, C. H. Kim, H. S. Kim et al., “Ferromagnetic Ge1-xMx (M = Mn, Fe, and Co) nanowires,” Chemistry of Materials, vol. 20, no. 14, pp. 4694–4702, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. I. van der Meulen, N. Petkov, M. A. Morris et al., “Single crystalline Ge1-xMnx nanowires as building blocks for nanoelectronics,” Nano Letters, vol. 9, no. 1, pp. 50–56, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Ottaviano, M. Passacantando, A. Verna et al., “Direct structural evidences of Mn dilution in Ge,” Journal of Applied Physics, vol. 100, no. 6, Article ID 063528, 4 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Ottaviano, A. Verna, V. Grossi et al., “Surface morphology of Mn+ implanted Ge(1 0 0): a systematic investigation as a function of the implantation substrate temperature,” Surface Science, vol. 601, no. 13, pp. 2623–2627, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Passacantando, L. Ottaviano, F. D'Orazio et al., “Growth of ferromagnetic nanoparticles in a diluted magnetic semiconductor obtained by Mn+ implantation on Ge single crystals,” Physical Review B, vol. 73, no. 19, Article ID 195207, 5 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Verna, L. Ottaviano, M. Passacantando et al., “Ferromagnetism in ion implanted amorphous and nanocrystalline MnxGe1-x,” Physical Review B, vol. 74, no. 8, Article ID 085204, 2 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Bürger, S. Zhou, M. Höwler et al., “Hysteretic anomalous Hall effect in a ferromagnetic, Mn-rich Ge:Mn nanonet,” Applied Physics Letters, vol. 100, no. 1, Article ID 012406, 4 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Yin, L. He, M. C. Dolph, J. Lu, R. Hull, and S. A. Wolf, “Modulation of the magnetism in ion implanted MnxGe1-x thin films by rapid thermal anneal,” Journal of Applied Physics, vol. 108, no. 9, Article ID 093919, 6 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Lifeng, C. Nuofu, C. Chenlong, L. Yanli, Y. Zhigang, and Y. Fei, “Magnetic properties of Mn-implanted n-type Ge,” Journal of Crystal Growth, vol. 273, no. 1-2, pp. 106–110, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. J. P. Ayoub, L. Favre, I. Berbezier, A. Ronda, L. Morresi, and N. Pinto, “Morphological and structural evolutions of diluted Ge1-xMnx epitaxial films,” Applied Physics Letters, vol. 91, no. 14, Article ID 141920, 3 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. P. Li, J. F. Wendelken, J. Shen, L. C. Feldman, J. R. Thompson, and H. H. Weitering, “Magnetism in MnxGe1-x semiconductors mediated by impurity band carriers,” Physical Review B, vol. 72, no. 19, Article ID 195205, 9 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Ogawa, X. Han, Z. Zhao, Y. Wang, K. L. Wang, and J. Zou, “Mn distribution behaviors and magnetic properties of GeMn films grown on Si (0 0 1) substrates,” Journal of Crystal Growth, vol. 311, no. 7, pp. 2147–2150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Devillers, M. Jamet, A. Barski et al., “Structure and magnetism of self-organized Ge1-xMnx nanocolumns on Ge(001),” Physical Review B, vol. 76, no. 20, Article ID 205306, 12 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Pinto, L. Morresi, M. Ficcadenti et al., “Magnetic and electronic transport percolation in epitaxial Ge1-xMnx films,” Physical Review B, vol. 72, no. 16, Article ID 165203, 7 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Gunnella, L. Morresi, N. Pinto et al., “Magnetization of epitaxial MnGe alloys on Ge(1 1 1) substrates,” Surface Science, vol. 577, no. 1, pp. 22–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Bihler, C. Jaeger, T. Vallaitis et al., “Structural and magnetic properties of Mn5Ge3 clusters in a dilute magnetic germanium matrix,” Applied Physics Letters, vol. 88, no. 11, Article ID 112506, 3 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Li, Y. Wu, Z. Guo, P. Luo, and S. Wang, “Magnetic and electrical transport properties of Ge1-xMnx thin films,” Journal of Applied Physics, vol. 100, no. 10, Article ID 103908, 9 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Ahlers, D. Bougeard, H. Riedl et al., “Ferromagnetic Ge(Mn) nanostructures,” Physica E, vol. 32, no. 1-2, pp. 422–425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Zou, Y. Wang, F. Xiu, K. L. Wang, and A. P. Jacob, “Tadpole shaped Ge0.96Mn0.04 magnetic semiconductors grown on Si,” Applied Physics Letters, vol. 96, no. 5, Article ID 051905, 3 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Xiu, I. V. Ovchinnikov, P. Upadhyaya et al., “Voltage-controlled ferromagnetic order in MnGe quantum dots,” Nanotechnology, vol. 21, no. 37, Article ID 375606, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. V. Ko, K. L. Teo, T. Liew et al., “Correlation of structural and magnetic properties of ferromagnetic Mn-implanted Si1-xGex films,” Journal of Applied Physics, vol. 103, no. 5, Article ID 053912, 7 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Zhu, H. H. Weitering, E. G. Wang, E. Kaxiras, and Z. Zhang, “Contrasting growth modes of Mn on Ge(100) and Ge(111) surfaces: subsurface segregation versus intermixing,” Physical Review Letters, vol. 93, no. 12, Article ID 126102, 4 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Wang, Z. M. Zeng, X. F. Han, X. G. Zhang, X. C. Sun, and Z. Zhang, “Temperature-dependent Mn-diffusion modes in CoFeB- and CoFe-based magnetic tunnel junctions: electron-microscopy studies,” Physical Review B, vol. 75, no. 21, Article ID 214424, 4 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Jamet, A. Barski, T. Devillers et al., “High-curie-temperature ferromagnetism in self-organized Ge1-xMnx nanocolumns,” Nature Materials, vol. 5, no. 8, pp. 653–659, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Chen, K. L. Wang, and K. Galatsis, “Electrical field control magnetic phase transition in nanostructured MnxGe1-x,” Applied Physics Letters, vol. 90, no. 1, Article ID 012501, 3 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Knobel, N. Samarth, S. A. Crooker, and D. D. Awschalom, “Spin-polarized quantum transport and magnetic field-dependent carrier density in magnetic two-dimensional electron gases,” Physica E, vol. 6, no. 1, pp. 786–789, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Shuto, M. Tanaka, and S. Sugahara, “Magneto-optical properties of group-IV ferromagnetic semiconductor Ge1-xFex grown by low-temperature molecular beam epitaxy,” Journal of Applied Physics, vol. 99, no. 8, Article ID 08D516, 3 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Shuto, M. Tanaka, and S. Sugahara, “Structural and magnetic properties of epitaxially grown Ge1-xFex thin films: fe concentration dependence,” Applied Physics Letters, vol. 90, no. 13, Article ID 132512, 3 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. U. Kim, T. E. Park, I. Kim et al., “Magnetic anisotropy in vertically aligned diluted magnetic Mn:Ge semiconductor nanowires,” Journal of Applied Physics, vol. 106, no. 12, Article ID 123903, 4 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. V. Grossi, P. Parisse, M. Passacantando et al., “Surface chemistry study of Mn-doped germanium nanowires,” Applied Surface Science, vol. 254, no. 24, pp. 8093–8097, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. F. M. Davidson, R. Wiacek, and B. A. Korgel, “Supercritical fluid-liquid-solid synthesis of gallium phosphide nanowires,” Chemistry of Materials, vol. 17, no. 2, pp. 230–233, 2005. View at Publisher · View at Google Scholar · View at Scopus