Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2012, Article ID 841961, 6 pages
http://dx.doi.org/10.1155/2012/841961
Review Article

Focused Ion Beam in the Study of Biomaterials and Biological Matter

Department of Engineering Sciences, The Å ngström Laboratory, Uppsala University, Uppsala 751 21, Sweden

Received 20 April 2011; Accepted 20 June 2011

Academic Editor: David D. Cohen

Copyright © 2012 Kathryn Grandfield and Håkan Engqvist. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. M. De Winter, C. T. W. M. Schneijdenberg, M. N. Lebbink et al., “Tomography of insulating biological and geological materials using focused ion beam (FIB) sectioning and low-kV BSE imaging,” Journal of Microscopy, vol. 233, no. 3, pp. 372–383, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Lešer, D. Drobne, Z. Pipan, M. Milani, and F. Tatti, “Comparison of different preparation methods of biological samples for FIB milling and SEM investigation,” Journal of Microscopy, vol. 233, no. 2, pp. 309–319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Palmquist, F. Lindberg, L. Emanuelsson, R. Brånemark, H. Engqvist, and P. Thomsen, “Morphological studies on machined implants of commercially pure titanium and titanium alloy (Ti6Al4V) in the rabbit,” Journal of Biomedical Materials Research. Part B, vol. 91, no. 1, pp. 309–319, 2009. View at Publisher · View at Google Scholar
  4. E. Lamers, X. F. Walboomers, M. Domanski et al., “Cryo dualbeam focused ion beam-scanning electron microscopy to evaluate the interface between cells and nanopatterned scaffolds,” Tissue Engineering. Part C, vol. 17, no. 1, pp. 1–7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. H. K. Edwards, M. W. Fay, S. I. Anderson, C. A. Scotchford, D. M. Grant, and P. D. Brown, “An appraisal of ultramicrotomy, FIBSEM and cryogenic FIBSEM techniques for the sectioning of biological cells on titanium substrates for TEM investigation,” Journal of Microscopy, vol. 234, no. 1, pp. 16–25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. F. Hayles, D. J. Stokes, D. Phifer, and K. C. Findlay, “A technique for improved focused ion beam milling of cryo-prepared life science specimens,” Journal of Microscopy, vol. 226, no. 3, pp. 263–269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Friedmann, A. Hoess, A. Cismak, and A. Heilmann, “Investigation of cell-substrate interactions by focused ion beam preparation and scanning electron microscopy,” Acta Biomaterialia, vol. 7, no. 6, pp. 2499–2507, 2011. View at Publisher · View at Google Scholar
  8. L. A. Giannuzzi, D. Phifer, N. J. Giannuzzi, and M. J. Capuano, “Two-dimensional and 3-dimensional analysis of bone/dental implant interfaces with the use of focused ion beam and electron microscopy,” Journal of Oral and Maxillofacial Surgery, vol. 65, no. 4, pp. 737–747, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. L. A. Giannuzzi and F. A. Stevie, Introduction to Focused Ion Beams, Springer Science, Boston, Mass, USA, 2005.
  10. V. Lešer, M. Milani, F. Tatti, Ž. P. Tkalec, J. Štrus, and D. Drobne, “Focused ion beam (FIB)/scanning electron microscopy (SEM) in tissue structural research,” Protoplasma, vol. 246, no. 1, pp. 41–48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Raffa, O. Vittorio, V. Pensabene, A. Menciassi, and P. Dario, “FIB-nanostructured surfaces and investigation of bio/nonbio interactions at the nanoscale,” IEEE Transactions on Nanobioscience, vol. 7, no. 1, pp. 1–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Martínez, E. Engel, C. López-Iglesias, C. A. Mills, J. A. Planell, and J. Samitier, “Focused ion beam/scanning electron microscopy characterization of cell behavior on polymer micro-/nanopatterned substrates: a study of cell-substrate interactions,” Micron, vol. 39, no. 2, pp. 111–116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Schmidt, M. Kühbacher, U. Gross, A. Kyriakopoulos, H. Schubert, and R. Zehbe, “From 2D slices to 3D volumes: image based reconstruction and morphological characterization of hippocampal cells on charged and uncharged surfaces using FIB/SEM serial sectioning,” Ultramicroscopy, vol. 111, no. 4, pp. 259–266, 2011. View at Publisher · View at Google Scholar
  14. J. A. W. Heymann, M. Hayles, I. Gestmann, L. A. Giannuzzi, B. Lich, and S. Subramaniam, “Site-specific 3D imaging of cells and tissues with a dual beam microscope,” Journal of Structural Biology, vol. 155, no. 1, pp. 63–73, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Marko, C. Hsieh, R. Schalek, J. Frank, and C. Mannella, “Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy,” Nature Methods, vol. 4, no. 3, pp. 215–217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M. W. Phaneuf, “Applications of focused ion beam microscopy to materials science specimens,” Micron, vol. 30, no. 3, pp. 277–288, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. L. A. Giannuzzi and F. A. Stevie, “A review of focused ion beam milling techniques for TEM specimen preparation,” Micron, vol. 30, no. 3, pp. 197–204, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Li, T. Malis, and S. Dionne, “Recent advances in FIB-TEM specimen preparation techniques,” Materials Characterization, vol. 57, no. 1, pp. 64–70, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. D. M. Wright, J. J. Rickard, N. H. Kyle et al., “The use of dual beam ESEM FIB to reveal the internal ultrastructure of hydroxyapatite nanoparticle-sugar-glass composites,” Journal of Materials Science: Materials in Medicine, vol. 20, no. 1, pp. 203–214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Jantou, M. Turmaine, G. D. West, M. A. Horton, and D. W. McComb, “Focused ion beam milling and ultramicrotomy of mineralised ivory dentine for analytical transmission electron microscopy,” Micron, vol. 40, no. 4, pp. 495–501, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Coutinho, T. Jarmar, F. Svahn et al., “Ultrastructural characterization of tooth-biomaterial interfaces prepared with broad and focused ion beams,” Dental Materials, vol. 25, no. 11, pp. 1325–1337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. N. I. Kato, “Reducing focused ion beam damage to transmission electron microscopy samples,” Journal of Electron Microscopy, vol. 53, no. 5, pp. 451–458, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. LA Giannuzzi, R Geurts, and J. Ringnalda, “2 keV Ga+ FIB milling for reducing amorphous damage in silicon,” Microscopy and Microanalysis, vol. 11, no. S02, pp. 828–829, 2005. View at Google Scholar
  24. L. A. Giannuzzi, “Reducing FIB damage using low energy ions,” Microscopy and Microanalysis, vol. 12, no. 2, pp. 1260–1261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Drobne, M. Milani, V. Lešer, and F. Tatti, “Surface damage induced by FIB milling and imaging of biological samples is controllable,” Microscopy Research and Technique, vol. 70, no. 10, pp. 895–903, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. K Grandfield, A Palmquist, F Ericson et al., “Bone response to free-form fabricated hydroxyapatite and zirconia scaffolds: a transmission electron microscopy study in the human maxilla,” Clinical Implant Dentistry and Related Research, Feb 11, 2010. In press. View at Publisher · View at Google Scholar
  27. T. Jarmar, A. Palmquist, R. Brånemark, L. Hermansson, H. Engqvist, and P. Thomsen, “Technique for preparation and characterization in cross-section of oral titanium implant surfaces using focused ion beam and transmission electron microscopy,” Journal of Biomedical Materials Research. Part A, vol. 87, no. 4, pp. 1003–1009, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Iliescu, V. Nelea, J. Werckmann, and I. N. Mihailescu, “Transmission electron microscopy investigation of pulsed-laser deposited hydroxylapatite thin films prepared by tripod and focused ion beam techniques,” Surface and Coatings Technology, vol. 187, no. 1, pp. 131–140, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Lindberg, J. Heinrichs, F. Ericson, P. Thomsen, and H. Engqvist, “Hydroxylapatite growth on single-crystal rutile substrates,” Biomaterials, vol. 29, no. 23, pp. 3317–3323, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Palmquist, F. Lindberg, L. Emanuelsson, R. Brånemark, H. Engqvist, and P. Thomsen, “Biomechanical, histological, and ultrastructural analyses of laser micro- and nano-structured titanium alloy implants: a study in rabbit,” Journal of Biomedical Materials Research. Part A, vol. 92, no. 4, pp. 1476–1486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Engqvist, G. A. Botton, M. Couillard et al., “A novel tool for high-resolution transmission electron microscopy of intact interfaces between bone and metallic implants,” Journal of Biomedical Materials Research. Part A, vol. 78, no. 1, pp. 20–24, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Grandfield, E. A. McNally, A. Palmquist, G. A. Botton, P. Thomsen, and H. Engqvist, “Visualizing biointerfaces in three dimensions: electron tomography of the bone-hydroxyapatite interface,” Journal of the Royal Society Interface, vol. 7, no. 51, pp. 1497–1501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Engqvist, F. Svahn, T. Jarmar et al., “A novel method for producing electron transparent films of interfaces between cells and biomaterials,” Journal of Materials Science: Materials in Medicine, vol. 19, no. 1, pp. 467–470, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Palmquist, T. Jarmar, L. Hermansson et al., “Calcium aluminate coated and uncoated free form fabricated cocr implants: a comparative study in rabbit,” Journal of Biomedical Materials Research. Part B, vol. 91, no. 1, pp. 122–127, 2009. View at Publisher · View at Google Scholar
  35. K. Grandfield, A. Palmquist, S. Gonçalves et al., “Free form fabricated features on CoCr implants with and without hydroxyapatite coating in vivo: a comparative study of bone contact and bone growth induction,” Journal of Materials Science: Materials in Medicine, vol. 22, no. 4, pp. 899–906, 2011. View at Google Scholar