Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2012, Article ID 905474, 13 pages
Review Article

Radiation Effects in Nuclear Ceramics

1Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, CNRS/IN2P3 et Université Paris-Sud, Bât. 108, 91405 Orsay, France
2LEMHE/ICMMO, UMR 8182, Université Paris-Sud, Bât. 410, 91405 Orsay, France
3Institute for Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw, Poland
4The Andrzej Soltan Institute for Nuclear Studies, 05-400 Swierk/Otwock, Poland

Received 29 March 2011; Accepted 17 May 2011

Academic Editor: Robert G. Elliman

Copyright © 2012 L. Thomé et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Due to outstanding physicochemical properties, ceramics are key engineering materials in many industrial domains. The evaluation of the damage created in ceramics employed in radiative media is a challenging problem for electronic, space, and nuclear industries. In this latter field, ceramics can be used as immobilization forms for radioactive wastes, inert fuel matrices for actinide transmutation, cladding materials for gas-cooled fission reactors, and structural components for fusion reactors. Information on the radiation stability of nuclear materials may be obtained by simulating the different types of interactions involved during the slowing down of energetic particles with ion beams delivered by various types of accelerators. This paper presents a review of the radiation effects occurring in nuclear ceramics, with an emphasis on recent results concerning the damage accumulation processes. Energetic ions in the KeV-GeV range are used to explore the nuclear collision (at low energy) and electronic excitation (at high energy) regimes. The recovery by electronic excitation of the damage created by ballistic collisions (SHIBIEC process) is also addressed.