Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013, Article ID 243515, 13 pages
http://dx.doi.org/10.1155/2013/243515
Review Article

Studies in Finishing Effects of Clay Mineral in Polymers and Synthetic Fibers

Textile Engineering Department, FE, Balochistan University of Information Technology, Engineering and Management Sciences, Airport Road, BALALI, Quetta, Balochistan, Pakistan

Received 13 May 2013; Revised 13 September 2013; Accepted 14 September 2013

Academic Editor: Wei Wu

Copyright © 2013 Faheem Uddin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Uddin, “Clays, nanoclays, and montmorillonite minerals,” Metallurgical and Materials Transactions A, vol. 39, no. 12, pp. 2804–2814, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. H. H. Murray, “Applied clay mineralogy today and tomorrow,” Clay Minerals, vol. 34, no. 1, pp. 39–49, 1999. View at Google Scholar · View at Scopus
  3. H. H. Murray, “Overview: clay mineral applications,” Applied Clay Science, vol. 5, no. 5-6, pp. 379–395, 1991. View at Google Scholar · View at Scopus
  4. F. Uddin, “Advancement in nanotechnology of polymers and fibres,” International Dyer, vol. 193, no. 2, pp. 33–35, 2008. View at Google Scholar · View at Scopus
  5. L. Christoph, Opportunities and Risks of Nanotechnologies, Allianz Center for Technology, OECD International Futures Program, Munich, Germany, 2005.
  6. Anon., Plastics, Additives and Compounding, 2007, http://www.addcomp.com/.
  7. Anon., Laviosa Chemical Mineraria, 2007, http://www.laviosa.it/.
  8. W. E. Gacitua, A. A. Ballerini, and J. Zhang, “Polymer nanocomposites: synthetic and natural fillers—a review,” Maderas Cienciay Tecnología, vol. 7, no. 3, pp. 159–178, 2005. View at Google Scholar
  9. Nanocor-Technical, Nanoclay Structures, Nanocor, Hoffman Estates, Ill, USA, 2008.
  10. Q. H. Zeng, A. B. Yu, G. Q. Lu, and D. R. Paul, “Clay-based polymer nanocomposites: research and commercial development,” Journal of Nanoscience and Nanotechnology, vol. 5, no. 10, pp. 1574–1592, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J. K. Pandey, K. Raghunatha Reddy, A. Pratheep Kumar, and R. P. Singh, “An overview on the degradability of polymer nanocomposites,” Polymer Degradation and Stability, vol. 88, no. 2, pp. 234–250, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Bob, Nanoclays: Counting on Consistency, Soutern Clay Products, Gonzales, Tex, USA.
  13. S. Sinha Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing,” Progress in Polymer Science, vol. 28, no. 11, pp. 1539–1641, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Lagaly, “Introduction: from clay mineral-polymer interactions to clay mineral-polymer nanocomposites,” Applied Clay Science, vol. 15, no. 1-2, pp. 1–9, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Liu, “Polymer modified clay minerals: a review,” Applied Clay Science, vol. 38, no. 1-2, pp. 64–76, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, “Synthesis and properties of polymide-clay hybrid,” Journal of Polymer Science A, vol. 31, no. 10, pp. 2493–2498, 1993. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Composites Science and Technology, vol. 63, no. 15, pp. 2223–2253, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. S. S. Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing,” Progress in Polymer Science, vol. 28, no. 11, pp. 1539–1641, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Gao, “Clay/polymer composites: the story,” Materials Today, vol. 7, no. 11, pp. 50–55, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Hussain, M. Hojjati, M. Okamoto, and R. E. Gorga, “Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview,” Journal of Composite Materials, vol. 40, no. 17, pp. 1511–1575, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Jordan, K. I. Jacob, R. Tannenbaum, M. A. Sharaf, and I. Jasiuk, “Experimental trends in polymer nanocomposites: a review,” Materials Science and Engineering A, vol. 393, no. 1-2, pp. 1–11, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. R. R. Hegde, A. Dahiya, and M. G. Kammath, Nylon fibers, 2004, http://utnrl.engr.utk.edu/.
  23. IHS, “Nylon fibers,” World Pertrochemical Report, 2012, http://chemical.ihs.com. View at Google Scholar
  24. A. Usuki, N. Hasegawa, and M. Kato, “Polymer-clay nanocomposites,” Advances in Polymer Science, vol. 179, pp. 135–195, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. Q. Lei and J. P. Hinestroza, “Application of nanotechnology for high performance textiles,” Journal of Textile and Apparel, Technology and Management, vol. 4, no. 1, pp. 1–7, 2004. View at Google Scholar · View at Scopus
  26. S. Lao, W. Ho, K. Ngyuen et al., “Microstructural analysis of nylon 11 nanocomposites,” in Proceedings of the 37th ISTC Conference, Seatle, Wash, USA, November 2005. View at Scopus
  27. S. Mohanty and S. K. Nayak, “Effect of clay exfoliation and organic modification on morphological, dynamic mechanical, and thermal behavior of melt-compounded polyamide-6 nanocomposites,” Polymer Composites, vol. 28, no. 2, pp. 153–162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. I. Weon, Z. Y. Xia, and H. J. Sue, “Morphological characterization of nylon-6 nanocomposite following a large-scale simple shear process,” Journal of Polymer Science B, vol. 43, no. 24, pp. 3555–3566, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Usuki, A. Koiwai, Y. Kojima et al., “Interaction of nylon-6-clay surface and mechanical properties of nylon-6-clay hybrid,” Journal of Applied Polymer Science, vol. 55, no. 1, pp. 119–123, 1993. View at Publisher · View at Google Scholar
  30. H. H. Kausch and G. H. Michler, “Effect of nanoparticle size and size-distribution on mechanical behavior of filled amorphous thermoplastic polymers,” Journal of Applied Polymer Science, vol. 105, no. 5, pp. 2577–2587, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. S. G. Hatzikiriakos, N. Rathod, and E. B. Muliawan, “The effect of nanoclays on the processibility of polyolefins,” Polymer Engineering and Science, vol. 45, no. 8, pp. 1098–1107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Chen, S. C. Wong, and S. Pisharath, “Fracture properties of nanoclay-filled polypropylene,” Journal of Applied Polymer Science, vol. 88, no. 14, pp. 3298–3305, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Nazaré, B. K. Kandola, and A. R. Horrocks, “Flame-retardant unsaturated polyester resin incorporating nanoclays,” Polymers for Advanced Technologies, vol. 17, no. 4, pp. 294–303, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Yang and G. L. Nelson, “Polymer/silica nanocomposites prepared via extrusion,” Polymers for Advanced Technologies, vol. 17, no. 4, pp. 320–326, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Kiliaris and C. D. Papaspyrides, “Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy,” Progress in Polymer Science, vol. 35, no. 7, pp. 902–958, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. J. W. Gilman, “Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites,” Applied Clay Science, vol. 15, no. 1-2, pp. 31–49, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Lewin, “Reflections on migration of clay and structural changes in nanocomposites,” Polymers for Advanced Technologies, vol. 17, no. 9-10, pp. 758–763, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Lewin, E. M. Pearce, K. Levon et al., “Nanocomposites at elevated temperatures: migration and structural changes,” Polymers for Advanced Technologies, vol. 17, no. 4, pp. 226–234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. W. Xie, Z. Gao, K. Liu et al., “Thermal characterization of organically modified montmorillonite,” Thermochimica Acta, vol. 367-368, pp. 339–350, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. L. G. Imhof and K. C. Stueben, “Evaluation of the smoke and flammability characteristics of polymer systems,” Polymer Engineering and Science, vol. 13, no. 2, pp. 146–152, 2004. View at Publisher · View at Google Scholar
  41. G. W. Jeffrey, “Flame retardant mechanism of polymer-clay nanocomposites,” in Flame Retardant Polymer Nanocomposites, B. A. Morgan and A. W. Charles, Eds., John Wiley and Sons, 2007. View at Publisher · View at Google Scholar
  42. J. W. Gilman, C. L. Jackson, A. B. Morgan et al., “Flammability properties of polymer—layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites,” Chemistry of Materials, vol. 12, no. 7, pp. 1866–1873, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Qin, S. Zhang, C. Zhao, G. Hu, and M. Yang, “Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene,” Polymer, vol. 46, no. 19, pp. 8386–8395, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. A. B. Morgan, L. L. Chu, and J. D. Harris, “A flammability performance comparison between synthetic and natural clays in polystyrene nanocomposites,” Fire and Materials, vol. 29, no. 4, pp. 213–229, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Uddin, “Some aspects in textile nanofinishing,” in Proceedings the 86th Textile Institute World Conference, The Hong Kong Polytechnic University, November 2008.
  46. R. Dastjerdi and M. Montazer, “A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties,” Colloids and Surfaces B, vol. 79, no. 1, pp. 5–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. E. Devaux, M. Rochery, and S. Bourbigot, “Polyurethane/clay and polyurethane/POSS nanocomposites as flame retarded coating for polyester and cotton fabrics,” Fire and Materials, vol. 26, no. 4-5, pp. 149–154, 2002. View at Google Scholar · View at Scopus
  48. Y. C. Li, J. Schulz, S. Mannen et al., “Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric,” ACS Nano, vol. 4, no. 6, pp. 3325–3337, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Agic and B. Mijovic, “Mechanical properties of electrospun carbon nanotube composites,” Journal of the Textile Institute, vol. 97, no. 5, pp. 419–427, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. A. R. Horrocks, B. K. Kandola, P. J. Davies, S. Zhang, and S. A. Padbury, “Developments in flame retardant textiles: a review,” Polymer Degradation and Stability, vol. 88, no. 1, pp. 3–12, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, and T. C. Chung, “Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties,” Chemistry of Materials, vol. 13, no. 10, pp. 3516–3523, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. A. R. Horrocks, B. K. Kandola, G. Smart, S. Zhang, and T. R. Hull, “Polypropylene fibers containing dispersed clays having improved fire performance. I. Effect of nanoclays on processing parameters and fiber properties,” Journal of Applied Polymer Science, vol. 106, no. 3, pp. 1707–1717, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Joshi and V. Viswanathan, “High-performance filaments from compatibilized polypropylene/clay nanocomposites,” Journal of Applied Polymer Science, vol. 102, no. 3, pp. 2164–2174, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. K. V. Singh, P. S. Sawhney, N. D. Sachinvab et al., “Applications and future of nanotechnology in textiles,” in Proceedings of the 2006 Beltwide Cotton Conferences, pp. 2498–2500, San Aritonio, Tex, USA.
  55. E. C. Lee, D. F. Mielewski, and R. J. Baird, “Exfoliation and dispersion enhancement in polypropylene nanocomposites by in-situ melt phase ultrasonication,” Polymer Engineering and Science, vol. 44, no. 9, pp. 1773–1782, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. Nanocor, “Nanomer products for polyolefin nanocomposites,” Technical Data P-801, Nanocor, Hoffman Estates, Ill, USA, 2008. View at Google Scholar
  57. W. L. Ijdo, S. Kemnetz, and D. Benderly, “An infrared method to assess organoclay delamination and orientation in organoclay polymer nanocomposites,” Polymer Engineering and Science, vol. 46, no. 8, pp. 1031–1039, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Mani, Q. Fan, S. C. Ugbolue, and Y. Yang, “Morphological studies of polypropylene-nanoclay composites,” Journal of Applied Polymer Science, vol. 97, no. 1, pp. 218–226, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. M. McAlpine, N. E. Hudson, J. J. Liggat, R. A. Pethrick, D. Pugh, and I. Rhoney, “Study of the factors influencing the exfoliation of an organically modified montmorillonite in methyl methacrylate/poly(methyl methacrylate) mixtures,” Journal of Applied Polymer Science, vol. 99, no. 5, pp. 2614–2626, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Y. Lee and L. A. Goettler, “Structure-property relationships in polymer blend nanocomposites,” Polymer Engineering and Science, vol. 44, no. 6, pp. 1103–1111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Peltola, E. Välipakka, J. Vuorinen, S. Syrjälä, and K. Hanhi, “Effect of rotational speed of twin screw extruder on the microstructure and rheological and mechanical properties of nanoclay-reinforced polypropylene nanocomposites,” Polymer Engineering and Science, vol. 46, no. 8, pp. 995–1000, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. W. Xie, J. M. Hwu, G. J. Jiang, T. M. Buthelezi, and W. P. Pan, “A study of the effect of surfactants on the properties of polystyrene-montmorillonite nanocomposites,” Polymer Engineering and Science, vol. 43, no. 1, pp. 214–222, 2003. View at Google Scholar · View at Scopus
  63. A. R. Horrocks, B. K. Kandola, G. Smart, S. Zhang, and T. R. Hull, “Polypropylene fibers containing dispersed clays having improved fire performance. I. Effect of nanoclays on processing parameters and fiber properties,” Journal of Applied Polymer Science, vol. 106, no. 3, pp. 1707–1717, 2007. View at Publisher · View at Google Scholar · View at Scopus