Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013, Article ID 349195, 6 pages
http://dx.doi.org/10.1155/2013/349195
Research Article

Forecasting of Corrosion Properties of Steel Wires for Production of Guide Wires for Cardiological Treatment

1Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
2Faculty of Biomedical Engineering, Silesian University of Technology, General de Gaulle’a 66, 41-800 Zabrze, Poland
3Department of Electrocardiology, Medical University of Silesia, Ziołowa 45/47, 40-635 Katowice, Poland

Received 16 May 2013; Accepted 31 August 2013

Academic Editor: Delia Brauer

Copyright © 2013 J. Przondziono et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The study presents evaluation of the influence of strain in drawing process and of surface modification on resistance to electrochemical corrosion of wires made of stainless steel for production of guide wires used in invasive cardiology. The results of static tensile test enabled us to determine the course of flow curve of wires made of X10CrNi 18-8 steel as well as mathematical form of flow stress function. Resistance to electrochemical corrosion was evaluated on the ground of registered anodic polarisation curves by means of potentiodynamic method. The tests were performed in solution simulating human blood on samples that were electrolytically polished and samples that were polished and then chemically passivated. Exemplary anodic polarisation curves were given. It was proved that with the applied strain, corrosion properties decrease. It was found that chemical passivation improves wire corrosion characteristics. Statistical analysis showed that there is a significant dependence between corrosion properties (polarisation resistance ) and strain applied in drawing process. Functions that present the change were selected. The issue is of importance to guide wire manufacturers because application of the suggested methodology will enable us to forecast corrosion characteristics of wire with the required strength drawn with the applied strain.