Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 401392, 6 pages
http://dx.doi.org/10.1155/2013/401392
Research Article

Properties and Analysis of Transparency Conducting AZO Films by Using DC Power and RF Power Simultaneous Magnetron Sputtering

1Department of Electronic Engineering, Hsiuping University of Science and Technology, Taichung 412-80, Taiwan
2Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 402-27, Taiwan
3Graduate Institute of Optoelectronic Engineering and Department of Electrical Engineering, National Chung Hsing University, No. 250, Kuo Kuang Road, Taichung 402-27, Taiwan

Received 15 September 2013; Accepted 2 November 2013

Academic Editor: Shoou-Jinn Chang

Copyright © 2013 Neng-Fu Shih et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Vossen, “Transparent conducting films,” Physics of Thin Films, vol. 9, pp. 1–64, 1977. View at Google Scholar
  2. L. Davis, “Properties of transparent conducting oxides deposited at room temperature,” Thin Solid Films, vol. 236, no. 1-2, pp. 1–5, 1993. View at Google Scholar · View at Scopus
  3. H. W. Lehmann and R. Widmer, “Preparation and properties of reactively co-sputtered transparent conducting films,” Thin Solid Films, vol. 27, no. 2, pp. 359–368, 1975. View at Google Scholar · View at Scopus
  4. H. S. Randhawa, M. D. Matthews, and R. F. Bunshah, “SnO2 films prepared by activated reactive evaporation,” Thin Solid Films, vol. 83, no. 2, pp. 267–271, 1981. View at Google Scholar · View at Scopus
  5. E. Shanthi, A. Banerjee, V. Dutta, and K. L. Chopra, “Electrical and optical properties of tin oxide films doped with F and (Sb+F),” Journal of Applied Physics, vol. 53, no. 3, pp. 1615–1621, 1982. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Fang, D. Li, and B.-L. Yao, “Fabrication and vacuum annealing of transparent conductive AZO thin films prepared by DC magnetron sputtering,” Vacuum, vol. 68, no. 4, pp. 363–372, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, Prentice-Hall, 3rd edition, 2001.
  8. A. L. Patterson, “The scherrer formula for X-ray particle size determination,” Physical Review, vol. 56, no. 10, pp. 978–982, 1939. View at Publisher · View at Google Scholar · View at Scopus
  9. J. H. Park, J. M. Shin, S.-Y. Cha et al., “Deposition-temperature effects on AZO thin films prepared by RF magnetron sputtering and their physical properties,” Journal of the Korean Physical Society, vol. 49, no. 2, pp. S584–S588, 2006. View at Google Scholar · View at Scopus
  10. Y. Kim, W. Lee, D.-R. Jung et al., “Optical and electronic properties of post-annealed ZnO:Al thin films,” Applied Physics Letters, vol. 96, no. 17, Article ID 171902, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Ohta, D. Ohba, S. Sato, Z. Tang, H. Shimizu, and H. Shirai, “Rapid thermal-plasma annealing of ZnO:Al films for silicon thin-film solar cells,” Thin Solid Films, vol. 519, no. 20, pp. 6920–6927, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. G. J. Exarhos, A. Rose, and C. F. Windisch Jr., “Spectroscopic characterization of processing-induced property changes in doped ZnO films,” Thin Solid Films, vol. 308-309, no. 1–4, pp. 56–62, 1997. View at Google Scholar · View at Scopus
  13. M. Chen, X. Wang, Y. H. Yu et al., “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Applied Surface Science, vol. 158, no. 1, pp. 134–140, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Guillén and J. Herrero, “Optical, electrical and structural characteristics of Al:ZnO thin films with various thicknesses deposited by DC sputtering at room temperature and annealed in air or vacuum,” Vacuum, vol. 84, no. 7, pp. 924–929, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J.-H. Lee, “Effects of hydrogen incorporation and heat treatment on the properties of ZnO:Al films deposited on polymer substrate for flexible solar cell applications,” Current Applied Physics, vol. 10, no. 3, pp. S515–S519, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Yang, Z. Wu, Z. Liu, A. Pang, Y.-L. Tu, and Z. C. Feng, “Room temperature deposition of Al-doped ZnO films on quartz substrates by radio-frequency magnetron sputtering and effects of thermal annealing,” Thin Solid Films, vol. 519, no. 1, pp. 31–36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. K. H. Ri, Y. B. Wang, W. L. Zhou, J. X. Gao, X. J. Wang, and J. Yu, “The effect of SiO2 buffer layer on the electrical and structural properties of Al-doped ZnO films deposited on soda lime glasses,” Applied Surface Science, vol. 257, no. 13, pp. 5471–5475, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. T. B. Bateman, “Elastic moduli of single-crystal zinc oxide,” Journal of Applied Physics, vol. 33, no. 11, pp. 3309–3312, 1962. View at Publisher · View at Google Scholar · View at Scopus
  19. Y.-Y. Chen, P. W. Wang, J.-C. Hsu, and C.-Y. Lee, “Post-annealing properties of aluminum-doped zinc oxide films fabricated by ion beam co-sputtering,” Vacuum, vol. 87, pp. 227–231, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Li, L. Fang, X. M. Chen et al., “Influence of oxygen argon ratio on the structural, electrical, optical and thermoelectrical properties of Al-doped ZnO thin films,” Physica E, vol. 41, no. 1, pp. 169–174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. F. Chang, W. C. Lin, and M. H. Hon, “Effects of post-annealing on the structure and properties of Al-doped zinc oxide films,” Applied Surface Science, vol. 183, no. 1-2, pp. 18–25, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. N. F. Shih, C. C. Lin, and C. Y. Kung, “Effect of oxygen contents on the properties of Al-Doped ZnO films prepared by low temperature magnetic controlled DC sputtering,” Japanese Journal of Applied Physics, vol. 52, no. 1, Article ID 01AC07, 2013. View at Google Scholar
  23. B. E. Sernelius, K.-F. Berggren, Z.-C. Jin, I. Hamberg, and C. G. Granqvist, “Band-gap tailoring of ZnO by means of heavy Al doping,” Physical Review B, vol. 37, no. 17, pp. 10244–10248, 1988. View at Publisher · View at Google Scholar · View at Scopus