Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013, Article ID 478421, 7 pages
http://dx.doi.org/10.1155/2013/478421
Research Article

Behavior of HPC with Fly Ash after Elevated Temperature

1School of Civil Engineering, Qingdao Technological University, Qingdao 266033, China
2State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
3Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116023, China

Received 3 January 2013; Accepted 10 March 2013

Academic Editor: Dimitar Dontchev

Copyright © 2013 Huai-Shuai Shang and Ting-Hua Yi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

For use in fire resistance calculations, the relevant thermal properties of high-performance concrete (HPC) with fly ash were determined through an experimental study. These properties included compressive strength, cubic compressive strength, cleavage strength, flexural strength, and the ultrasonic velocity at various temperatures (20, 100, 200, 300, 400 and 500C) for high-performance concrete. The effect of temperature on compressive strength, cubic compressive strength, cleavage strength, flexural strength, and the ultrasonic velocity of the high-performance concrete with fly ash was discussed according to the experimental results. The change of surface characteristics with the temperature was observed. It can serve as a reference for the maintenance, design, and the life prediction of high-performance concrete engineering, such as high-rise building, subjected to elevated temperatures.