Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013, Article ID 629092, 7 pages
http://dx.doi.org/10.1155/2013/629092
Research Article

Mechanical Properties and Morphological Characterization of PLA/Chitosan/Epoxidized Natural Rubber Composites

1Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
2Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
3Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
4School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia

Received 24 May 2013; Accepted 17 August 2013

Academic Editor: Gongnan Xie

Copyright © 2013 Zainoha Zakaria et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Poly (lactic acid) (PLA)/chitosan (CS) natural polymer/epoxidised natural rubber (ENR) composites were successfully prepared through a solution casting method. The morphological characteristics of fabricated composites were investigated by scanning electron microscopy (SEM) and optical microscopy. The microstructure of PLA/ENR was significantly altered with the addition of CS. SEM analysis of composites fractured surfaces revealed smooth and homogeneous texture and good dispersion of CS. However for 15 wt% CS composites, the phase segregation and poor adhesion between the polymers were observed. Fourier transform infrared spectroscopy revealed some levels of attractive interaction between CS, PLA, and ENR in the composites. The mechanical properties of composites in terms of tensile strength and tensile modulus were significantly improved with the addition of CS into the matrix while the percent elongation at break decreased. The tensile strength increased up to 5 wt% CS loading for both PLA/CS and PLA/ENR/CS and thereafter decreased while Young’s modulus increased up to 10 wt%. However, when the CS content was increased to 15 wt%, the tensile strength and tensile modulus were slightly decreased. These improvements were attributed to good dispersion of CS at the optimum filler levels and attractive interaction between the composites components.