Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013, Article ID 734031, 4 pages
Research Article

Carbonation Coefficients from Concrete Made with High-Absorption Limestone Aggregate

College of Engineering, Universidad Autónoma de Yucatán, Avenida Industrias No Contaminantes s/n por Periférico Norte, Mérida, YUC, CP 97110, Mexico

Received 31 May 2013; Accepted 28 August 2013

Academic Editor: Amit Bandyopadhyay

Copyright © 2013 Eric I. Moreno. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Normal aggregates employed in concrete have absorption levels in the range of 0.2% to 4% for coarse aggregate and 0.2 to 2% for fine aggregate. However, some aggregates have absorption levels above these values. As the porosity of concrete is related to the porosity of both the cement paste and the aggregate and the carbonation rate is a function, among other things, of the porosity of the material, there is concern about the effect of this high porosity material in achieving good quality concrete from the durability point of view. Thus, the objective of this investigation was to study the carbonation rates of concrete specimens made with high-absorption limestone aggregate. Four different water/cement ratios were used, and cylindrical concrete specimens were exposed to accelerated carbonation. High porosity values were obtained for concrete specimens beyond the expected limits for durable concrete. However, carbonation coefficients related to normal quality concrete were obtained for the lowest water/cement ratio employed suggesting that durable concrete may be obtained with this material despite the high porosity.