Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013, Article ID 786769, 9 pages
http://dx.doi.org/10.1155/2013/786769
Research Article

Modelling the Shear-Tension Coupling of Woven Engineering Fabrics

1School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
2Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea

Received 2 January 2013; Accepted 10 February 2013

Academic Editor: Abbas Milani

Copyright © 2013 F. Abdiwi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Rudd, A. Long, K. Kendall, and C. Mangin, Liquid Moulding Technologies, vol. 1, 1997.
  2. P. Boisse, N. Hamila, E. Vidal-Sallé, and F. Dumont, “Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses,” Composites Science and Technology, vol. 71, no. 5, pp. 683–692, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Lin, P. Evans, P. Harrison, J. Wang, A. Long, and M. Clifford, “An experimental investigation into the factors affecting the forming performance of thermoset prepreg,” in Proceedings of the 9th International ESAFORM Conference on Materials Forming, 2006.
  4. H. Lin, J. Wang, A. C. Long, M. J. Clifford, and P. Harrison, “Predictive modelling for optimization of textile composite forming,” Composites Science and Technology, vol. 67, no. 15-16, pp. 3242–3252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Cherouat and J. L. Billoët, “Mechanical and numerical modelling of composite manufacturing processes deep-drawing and laying-up of thin pre-impregnated woven fabrics,” Journal of Materials Processing Technology, vol. 118, no. 1–3, pp. 460–471, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. Q. Fu, W. Zhu, Z. Zhang, and H. Gong, “Effect of variable blank holder force on rectangular box drawing process of hot-galvanized sheet steel,” Journal of Materials Science and Technology, vol. 21, no. 6, pp. 909–913, 2005. View at Google Scholar · View at Scopus
  7. M. Hou, “Stamp forming of continuous glass fibre reinforced polypropylene,” Composites A, vol. 28, no. 8, pp. 695–702, 1997. View at Google Scholar · View at Scopus
  8. W. Lee, J. Cao, P. Badel, and P. Boisse, “Non-orthogonal constitutive model for woven composites incorporating tensile effect on shear behavior,” International Journal of Material Forming, vol. 1, no. 1, pp. 891–894, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Lee, M. K. Um, J. H. Byun, P. Boisse, and J. Cao, “Numerical study on thermo-stamping of woven fabric composites based on double-dome stretch forming,” International Journal of Material Forming, vol. 3, no. 2, pp. 1217–1227, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. P. ] Harrison, F. Abdiwi, Z. Guo, P. Potluri, and W. Yu, “Characterising the shear-tension coupling and wrinkling behaviour of woven engineering fabrics,” Composites A, vol. 43, no. 6, pp. 903–914, 2012. View at Publisher · View at Google Scholar
  11. P. Harrison, M. Clifford, and A. Long, “Shear characterisation of woven textile composites,” in Proceedings of the 10th European Conference on Composite Materials, pp. 3–7, 2002.
  12. S. B. Sharma, M. P. F. Sutcliffe, and S. H. Chang, “Characterisation of material properties for draping of dry woven composite material,” Composites A, vol. 34, no. 12, pp. 1167–1175, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Willems, S. V. Lomov, I. Verpoest, and D. Vandepitte, “Picture frame shear tests on woven textile composite reinforcements with controlled pretension,” in Proceedings of the 10th European Conference on Composite Materials, pp. 999–1004, April 2006. View at Scopus
  14. F. Abdiwi, P. Harrison, W. R. Yu, and Z. Guo, “Modelling the shear-tnsion coupling of engineering fabrics,” in Proceedings of the 8th European Solid Mechanics Conference (ESCM '12), Graz, Austria, 2012.
  15. W. R. Yu, P. Harrison, and A. Long, “Finite element forming simulation for non-crimp fabrics using a non-orthogonal constitutive equation,” Composites A, vol. 36, no. 8, pp. 1079–1093, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Harrison, W. R. Yu, and A. C. Long, “Rate dependent modelling of the forming behaviour of viscous textile composites,” Composites A, vol. 42, pp. 1719–1726, 2011. View at Google Scholar
  17. M. Komeili and A. S. Milani, “Shear response of woven fabric composites under meso-level uncertainties,” Journal of Composite Materials, 2012. View at Publisher · View at Google Scholar
  18. P. Badel, E. Vidal-Sallé, and P. Boisse, “Computational determination of in-plane shear mechanical behaviour of textile composite reinforcements,” Computational Materials Science, vol. 40, no. 4, pp. 439–448, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. A. Khan, T. Mabrouki, E. Vidal-Sallé, and P. Boisse, “Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark,” Journal of Materials Processing Technology, vol. 210, no. 2, pp. 378–388, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Peng and J. Cao, “A dual homogenization and finite element approach for material characterization of textile composites,” Composites B, vol. 33, no. 1, pp. 45–56, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Badel, S. Gauthier, E. Vidal-Sallé, and P. Boisse, “Rate constitutive equations for computational analyses of textile composite reinforcement mechanical behaviour during forming,” Composites A, vol. 40, no. 8, pp. 997–1007, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Boisse, M. Borr, K. Buet, and A. Cherouat, “Finite element simulations of textile composite forming including the biaxial fabric behaviour,” Composites B, vol. 28, no. 4, pp. 453–464, 1997. View at Google Scholar · View at Scopus
  23. P. Boisse, B. Zouari, and A. Gasser, “A mesoscopic approach for the simulation of woven fibre composite forming,” Composites Science and Technology, vol. 65, no. 3-4, pp. 429–436, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Willems, Forming Simulation of Textile Reinforced Composite Shell Structures, vol. 281, Faculteit Ingenieurswetenshapen Arenbergkasteel, Katholieke Universiteit Leuven, Leuven, Belgium, 2008.
  25. P. Harrison, P. Gomes, R. Correia, F. Abdiwi, and W. Yu, “Press forming the double-dome benchmark geometry using a 0/90 uniaxial cross-ply advanced thermoplastic composite,” in Proceedings of the 15th European Conference on Composite Materials, Venice, Italy, June 2012.
  26. W. R. Yu, F. Pourboghrat, K. Chung, M. Zampaloni, and T. J. Kang, “Non-orthogonal constitutive equation for woven fabric reinforced thermoplastic composites,” Composites A, vol. 33, no. 8, pp. 1095–1105, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. W. R. Yu, M. Zampaloni, F. Pourboghrat, K. Chung, and T. J. Kang, “Sheet hydroforming of woven FRT composites: non-orthogonal constitutive equation considering shear stiffness and undulation of woven structure,” Composite Structures, vol. 61, no. 4, pp. 353–362, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Harrison, A. Long, W. Yu, and M. Clifford, “Investigating the performance of two different constitutive models for viscous textile composites,” in Proceedings of the 8th International Conference on Textile Composites (TEXCOMP '06), Nottingham, UK, October 2006.
  29. P. Harrison, W. R. Yu, J. Wang, T. Baillie, A. C. Long, and M. J. Clifford, “Numerical evaluation of a rate dependent model for viscous textile composites,” in Proceedings of the 15th International Conference on Composite Materials, Durban, South Africa, 2005.
  30. F. Abdiwi, P. Harrison, I. Koyama et al., “Characterising and modelling variability of tow orientation in engineering fabrics and textile composites,” Composites Science and Technology, vol. 72, no. 9, pp. 1034–1041, 2012. View at Publisher · View at Google Scholar
  31. M. Sutcliffe, S. Sharma, A. Long et al., “A comparison of simulation approaches for forming of textile composites,” in Proceedings of the 5th International ESAFORM Conference on Materials Forming, Krakow, Poland, April 2002.
  32. J. Cao, R. Akkerman, P. Boisse et al., “Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results,” Composites A, vol. 39, no. 6, pp. 1037–1053, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Harrison, M. J. Clifford, and A. C. Long, “Shear characterisation of viscous woven textile composites: a comparison between picture frame and bias extension experiments,” Composites Science and Technology, vol. 64, no. 10-11, pp. 1453–1465, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Harrison, P. Potluri, K. Bandara, and A. C. Long, “A normalisation procedure for Biaxial Bias Extension tests,” International Journal of Material Forming, vol. 1, no. 1, pp. 863–866, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Harrison, J. Wiggers, and A. C. Long, “Normalization of shear test data for rate-independent compressible fabrics,” Journal of Composite Materials, vol. 42, no. 22, pp. 2315–2344, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Launay, G. Hivet, A. V. Duong, and P. Boisse, “Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements,” Composites Science and Technology, vol. 68, no. 2, pp. 506–515, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Harrison, “Normalisation of biaxial bias extension test results considering shear tension coupling,” Composites A, vol. 43, no. 9, pp. 1546–1554, 2012. View at Publisher · View at Google Scholar