Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013, Article ID 847876, 20 pages
http://dx.doi.org/10.1155/2013/847876
Research Article

Experimental Investigation on Material Transfer Mechanism in WEDM of Pure Titanium (Grade-2)

1Department of Mechanical Engineering, M.M.University, Mullana, Ambala, Haryana 133207, India
2Department of Mechanical Engineering, Thapar University, Patiala, Punjab 147004, India
3Department of Mechanical Engineering, National Institute of Technology, Kurukshetra, Haryana 136119, India

Received 1 May 2013; Revised 7 October 2013; Accepted 9 October 2013

Academic Editor: Augusto Deus

Copyright © 2013 Anish Kumar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Y. Hong, I. Markus, and W.-C. Jeong, “New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V,” International Journal of Machine Tools and Manufacture, vol. 41, no. 15, pp. 2245–2260, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. A. B. Puri and B. Bhattacharyya, “An analysis and optimisation of the geometrical inaccuracy due to wire lag phenomenon in WEDM,” International Journal of Machine Tools and Manufacture, vol. 43, no. 2, pp. 151–159, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. K. H. Ho, S. T. Newman, S. Rahimifard, and R. D. Allen, “State of the art in wire electrical discharge machining (WEDM),” International Journal of Machine Tools and Manufacture, vol. 44, no. 12-13, pp. 1247–1259, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. E. O. Ezugwu and Z. M. Wang, “Titanium alloys and their machinability—a review,” Journal of Materials Processing Technology, vol. 68, no. 3, pp. 262–274, 1997. View at Google Scholar · View at Scopus
  5. S. F. Miller, A. J. Shih, and J. Qu, “Investigation of the spark cycle on material removal rate in wire electrical discharge machining of advanced materials,” International Journal of Machine Tools and Manufacture, vol. 44, no. 4, pp. 391–400, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. T. Huang and Y. S. Liao, “Optimization of machining parameters of Wire-EDM based on Grey relational and statistical analyses,” International Journal of Production Research, vol. 41, no. 8, pp. 1707–1720, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. M. S. Hewidy, T. A. El-Taweel, and M. F. El-Safty, “Modelling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM,” Journal of Materials Processing Technology, vol. 169, no. 2, pp. 328–336, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. S. S. Mahapatra and A. Patnaik, “Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method,” International Journal of Advanced Manufacturing Technology, vol. 34, no. 9-10, pp. 911–925, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Ramakrishnan and L. Karunamoorthy, “Multi response optimization of wire EDM operations using robust design of experiments,” International Journal of Advanced Manufacturing Technology, vol. 29, no. 1-2, pp. 105–112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Manna and B. Bhattacharyya, “Taguchi and Gauss elimination method: a dual response approach for parametric optimization of CNC wire cut EDM of PRAlSiCMMC,” International Journal of Advanced Manufacturing Technology, vol. 28, no. 1-2, pp. 67–75, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Sarkar, S. Mitra, and B. Bhattacharyya, “Parametric optimisation of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model,” International Journal of Advanced Manufacturing Technology, vol. 27, no. 5-6, pp. 501–508, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Sarkar, K. Ghosh, S. Mitra, and B. Bhattacharyya, “An integrated approach to optimization of WEDM combining single-pass and multipass cutting operation,” Materials and Manufacturing Processes, vol. 25, no. 8, pp. 799–807, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. T. Yang, C. J. Tzeng, Y. K. Yang, and M. H. Hsieh, “Optimization of wire electrical discharge machining process parameters for cutting tungsten,” International Journal of Advanced Manufacturing Technology, vol. 60, no. 1–4, pp. 135–147, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Kumar, V. Kumar, and J. Kumar, “An investigation into machining characteristics of commercially pure titanium (Grade-2) using CNC WEDM,” Applied Mechanics and Materials, vol. 159, pp. 56–68, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Shah, N. A. Mufti, D. Rakwal, and E. Bamberg, “Material removal rate, kerf, and surface roughness of tungsten carbide machined with wire electrical discharge machining,” Journal of Materials Engineering and Performance, vol. 20, no. 1, pp. 71–76, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Sadeghi, H. Razavi, A. Esmaeilzadeh, and F. Kolahan, “Optimization of cutting conditions in WEDM process using regression modelling and Tabu-search algorithm,” Proceedings of the Institution of Mechanical Engineers B, vol. 225, no. 10, pp. 1825–1834, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. K.-Y. Kung and K.-T. Chiang, “Modeling and analysis of machinability evaluation in the wire electrical discharge machining (WEDM) process of aluminum oxide-based ceramic,” Materials and Manufacturing Processes, vol. 23, no. 3, pp. 241–250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. C.-J. Tzeng, Y.-K. Yang, M.-H. Hsieh, and M.-C. Jeng, “Optimization of wire electrical discharge machining of pure tungsten using neural network and response surface methodologyg,” Proceedings of the Institution of Mechanical Engineers B, vol. 225, no. 6, pp. 841–852, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. R. V. Rao and P. J. Pawar, “Modelling and optimization of process parameters of wire electrical discharge machining,” Proceedings of the Institution of Mechanical Engineers B, vol. 223, no. 11, pp. 1431–1440, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. P.-H. Yu, H.-K. Lee, Y.-X. Lin, S.-J. Qin, B.-H. Yan, and F.-Y. Huang, “Machining characteristics of polycrystalline silicon by wire electrical discharge machining,” Materials and Manufacturing Processes, vol. 26, no. 12, pp. 1443–1450, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Kuruvila and H. V. Ravindra, “Parametric influence and optimization of wire edm of hot die steel,” Machining Science and Technology, vol. 15, no. 1, pp. 47–75, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. S. H. Lee and X. Li, “Study of the surface integrity of the machined workpiece in the EDM of tungsten carbide,” Journal of Materials Processing Technology, vol. 139, no. 1–3, pp. 315–321, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. Y.-C. Lin, Y.-F. Chen, C.-T. Lin, and H.-J. Tzeng, “Electrical Discharge Machining (EDM) characteristics associated with electrical discharge energy on machining of cemented tungsten carbide,” Materials and Manufacturing Processes, vol. 23, no. 4, pp. 391–399, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. K. P. Somashekhar, N. Ramachandran, and J. Mathew, “Material removal characteristics of microslot (kerf) geometry in μ-WEDM on aluminum,” International Journal of Advanced Manufacturing Technology, vol. 51, no. 5–8, pp. 611–626, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. Y.-C. Lin, C.-H. Cheng, B.-L. Su, and L.-R. Hwang, “Machining characteristics and optimization of machining parameters of SKH 57 high-speed steel using electrical-discharge machining based on Taguchi method,” Materials and Manufacturing Processes, vol. 21, no. 8, pp. 922–929, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. H. Lee and X. Li, “Study of the surface integrity of the machined workpiece in the EDM of tungsten carbide,” Journal of Materials Processing Technology, vol. 139, no. 1–3, pp. 315–321, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Kumar, S. Maheshwari, C. Sharma, and N. Beri, “Research developments in additives mixed electrical discharge machining (AEDM): a state of art review,” Materials and Manufacturing Processes, vol. 25, no. 10, pp. 1166–1180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. H. T. Lee and T. Y. Tai, “Relationship between EDM parameters and surface crack formation,” Journal of Materials Processing Technology, vol. 142, no. 3, pp. 676–683, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Hasçalik and U. Çaydaş, “Electrical discharge machining of titanium alloy (Ti-6Al-4V),” Applied Surface Science, vol. 253, no. 22, pp. 9007–9016, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. N. G. Patil and P. K. Brahmankar, “Some studies into wire electro-discharge machining of alumina particulate-reinforced aluminum matrix composites,” International Journal of Advanced Manufacturing Technology, vol. 48, no. 5–8, pp. 537–555, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. D. C. Montgomery, Design and Analysis of Experiments, Wiley, New York, NY, USA, 5th edition, 2001.