Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 903236, 9 pages
http://dx.doi.org/10.1155/2013/903236
Research Article

Reinforcement of Recycled Foamed Asphalt Using Short Polypropylene Fibers

1Highway Research Division, Korea Institute of Construction Technology, Daehwa-Dong 283, Goyangdae-Ro, Ilsanseo-Gu, Gyeonggi-Do, Goyang-Si 411-712, Republic of Korea
2Department of Civil Engineering, Seoul National University of Technology, 172 Gongneung 2 Dong, Nowon-Gu, Gongneung-Dong, Seoul 139-743, Republic of Korea

Received 23 January 2013; Accepted 25 March 2013

Academic Editor: Md Mainul Islam

Copyright © 2013 Yongjoo Kim and Tae-Soon Park. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. J. Jenkins, Groot, D. JLA, M. Ven, and A. Molenaar, “Half-warm foamed bitumen treatment, a new process,” in Proceedings of the 7th Conference on Asphalt Pavements for Southern Africa, pp. 1–17, 1999.
  2. H. W. Busching, O. E. Achara, and S. E. Gaj, Use of Short Polypropylene Fibers in Hot Mix Asphalt Concrete, Resident Representative Clemson University, 1980.
  3. M. Smith and R. A. Howden, Final Evaluation of Hercules Fiber Pave 3010 in Cold Mix Pothole Patch Material, Resident Representative Indiana DOT, 1982.
  4. R. B. Freeman, J. L. Burati, S. N. Amirkhanian, and W. C. Bridge, Polyester Fibers in Asphalt Paving Mixtures, Resident Representative Clemson University, Asphalt paving technology, 1989.
  5. B. S. Bueno, W. R. Silvia, D. C. Lima, and E. Minete, “Engineering properties of fiber reinforced cold asphalt mixes,” Journal of Environmental Engineering, vol. 129, no. 10, pp. 952–955, 2003. View at Google Scholar
  6. D. Y. Lee, “Treating marginal aggregates and soil with foamed asphalt,” Association of Asphalt Paving Technologists, vol. 50, pp. 150–211, 1981. View at Google Scholar
  7. A. van Wijk and L. E. Wood, “Use of foamed asphalt in recycling of an asphalt pavement,” Transportation Research Record, pp. 96–103, 1983. View at Google Scholar · View at Scopus
  8. M. Brennen, M. Tia, A. Altschaeffl, and L. E. Wood, “Laboratory investigation of the foamed asphalt for recycled bituminous pavements,” Transportation Research Record, pp. 80–87, 1983. View at Google Scholar · View at Scopus
  9. F. L. Roberts, J. C. Engelbrecht, and T. W. Kennedy, “Evaluation of recycled mixtures using foamed asphalt,” Transportation Research Record, pp. 78–85, 1984. View at Google Scholar · View at Scopus
  10. M. Tia and L. E. Wood, “Use of asphalt emulsion and foamed asphalt in cold-recycled asphalt paving mixtures,” Transportation Research Record, pp. 315–321, 1984. View at Google Scholar
  11. B. Marquis, R. L. Bradbury, S. Colson et al., Design, Construction and Early Performance of Foamed Asphalt Full Depth Reclaimed(FDR) Pavement in Maine, CD-ROM, Transportation Research Board of the National Academies, Washington, DC, USA, 2003.
  12. L. N. Mohammad, M. Y. Abu-Farsakh, Z. Wu, and C. Abadie, “Louisiana experience with foamed recycled asphalt pavement base materials,” Transportation Research Record, no. 1832, pp. 17–24, 2003. View at Google Scholar · View at Scopus
  13. A. Loizos and V. Papavasiliou, “Evaluation of foamed asphalt cold in-place pavement recycling using nondestructive techniques,” Journal of Transportation Engineering, vol. 132, no. 12, pp. 970–978, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. G. P. He and W. G. Wong, “Laboratory study on permanent deformation of foamed asphalt mix incorporating reclaimed asphalt pavement materials,” Construction and Building Materials, vol. 21, no. 8, pp. 1809–1819, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Kim and H. D. Lee, “Development of mix design procedure for cold in-place recycling with foamed asphalt,” Journal of Materials in Civil Engineering, vol. 18, no. 1, pp. 116–124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. J. Kim, H. D. Lee, and M. Heizman, “Validation of new mix design procedure for cold in-place recycling with foamed asphalt,” Journal of Materials in Civil Engineering, vol. 19, no. 11, pp. 1000–1010, 2007. View at Publisher · View at Google Scholar
  17. J. W. Button and J. A. Epps, Mechanical Characterization of Fiber Reinforced Bituminous Concrete, Resident Representative Texas A & M University. Residence Foundation for Hercules, 1981.
  18. D. R. Mills and T. J. Keller, The Effectiveness of Synthetic Fiber Reinforced Asphaltic Concrete Overlays in Delaware, Resident Representative Delaware DOT, 1982.
  19. J. A. Epps, J. W. Button, and D. Little D, Predicted Performance of Asphalt Paving Mixtures Containing Fibers, Resident Representative Texas A & M. University, 1984.
  20. R. H. Bowering and C. L. Martin, “Foamed bitumen production and application of mixtures, evaluation and performance of pavements,” Association of Asphalt Paving Technologists, vol. 45, pp. 453–477, 1976. View at Google Scholar · View at Scopus
  21. A. Lewis and D. C. Collings, “Cold in place recycling: a relevant process for road rehabilitation and upgrading,” in Proceedings of the 7th Conference on Asphalt Pavement for South Africa (CAPSA '99), pp. 1–13, 1999.
  22. H. Castedo, C. C. Beuadon, E. L. Wood, and A. G. Altschaeffl, “Durability characteristics of foamed asphalt mixtures,” in Proceedings of the 29th Annual Canadian Technical Asphalt Association Conference, pp. 103–107, Montreal, Canada, 1984.
  23. K. M. Muthen, “Foamed asphalt mixes design procedures,” Contract Rep CR-98/077, CSIR Transportek, Pretoria, South Africa, 1999. View at Google Scholar
  24. ASTM, “Standard test methods for laboratory compaction characteristics of soil using modified effort,” Tech. Rep. ASTM D 1557-07, ASTM, West Conshohocken, Pa, USA, 2007. View at Google Scholar
  25. P. J. Ruckel, L. L. Kole, F. Abel, R. E. Zator, J. W. Button, and J. A. Epps, “Foam mix asphalt advances, asphalt pavement construction: new materials and techniques,” Tech. Rep. ASTM SPT 724, 1982. View at Google Scholar
  26. ASTM, “Test method for resistance of plastic flow of bituminous mixtures using Marshall apparatus,” Tech. Rep. ASTM D1559-89, ASTM, West Conshohocken, Pa, USA, 1989. View at Google Scholar
  27. ASTM, “Standard test method for indirect tension test for resilient modulus of bituminous mixtures,” Tech. Rep. ASTM D 4123-82, ASTM, West Conshohocken, Pa, USA, 1995. View at Google Scholar
  28. Korea National Highway Corporation (KNHC), Expressway Construction Guide Specification, part 9, Asphalt Pavement for Surface Course, 2007.