Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2014, Article ID 361652, 6 pages
http://dx.doi.org/10.1155/2014/361652
Research Article

Morphological, Structural, and Optical Properties of Single-Phase Cu(In,Ga)Se2 Thin Films from the Selenization of Thermally Evaporated InSe/Cu/GaSe Precursors

Department of Physics, University of the Free State, Private Bag X13, Phuthaditjhaba 9866, South Africa

Received 26 January 2013; Accepted 24 April 2013; Published 16 January 2014

Academic Editor: Dachamir Hotza

Copyright © 2014 Francis B. Dejene. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Alberts, J. Titus, and R. W. Birkmire, “Material and device properties of single-phase Cu(In,Ga)(Se,S)2 alloys prepared by selenization/sulfurization of metallic alloys,” Thin Solid Films, vol. 451-452, pp. 207–211, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Ramanathan, M. A. Contreras, B. Egaas et al., “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Progress in Photovoltaics, vol. 11, no. 4, pp. 225–230, 2003. View at Publisher · View at Google Scholar
  3. V. Alberts, J. H. Schon, and E. Bucher, “Improved material properties of polycrystalline prepared by rapid thermal treatment of metallic alloys in H2Se/Ar,” Journal of Applied Physics, vol. 84, no. 12, p. 6881, 1998. View at Publisher · View at Google Scholar
  4. B. Başol, V. J. Kapur, C. R. Leidholm, A. Halani, and K. Gledhill, “Flexible and light weight copper indium diselenide solar cells on polyimide substrates,” Solar Energy Materials and Solar Cells, vol. 43, no. 1, pp. 93–98, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Marudacalam, R. W. Birkmire, H. Hichri, and J. M. Schulz, “Phases, morphology, and diffusion in CuInxGa1-xSe2 thin films,” Journal of Applied Physics, vol. 82, no. 6, p. 2896, 1997. View at Publisher · View at Google Scholar
  6. M. Marudachalam, H. Hichri, R. Klenk, R. W. Birkmire, W. N. Shafarman, and J. M. Schultz, “Preparation of homogeneous Cu(InGa)Se2 films by selenization of metal precursors in H2Se atmosphere,” Applied Physics Letters, vol. 67, p. 3978, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. B. M. Başol, V. K. Kapur, A. Halani et al., “Cu (In,Ga)Se2 thin films and solar cells prepared by selenization of metallic precursors,” Journal of Vacuum Science and Technology A, vol. 14, no. 4, pp. 2251–2256, 1996. View at Google Scholar · View at Scopus
  8. M. Marudachalam, R. W. Birkmire, H. Hichri, J. M. Schultz, A. Swartzlander, and M. M. Al-Jassim, “Phases, morphology, and diffusion in CulnxGa1-xSe2 thin films,” Journal of Applied Physics, vol. 82, no. 6, pp. 2896–2905, 1997. View at Google Scholar · View at Scopus
  9. T. Nakada, H. Ohbo, T. Watanabe, H. Nakazawa, M. Matsui, and A. Kunioka, “Improved Cu(In,Ga)(S,Se)2 thin film solar cells by surface sulfurization,” Solar Energy Materials and Solar Cells, vol. 49, no. 1–4, pp. 285–290, 1997. View at Google Scholar · View at Scopus
  10. Y. Nagoya, K. Kushiya, M. Tachiyuki, and O. Yamase, “Role of incorporated sulfur into the surface of Cu(InGa)Se2 thin-film absorber,” Solar Energy Materials and Solar Cells, vol. 67, no. 1–4, pp. 247–253, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Palm, V. Probst, W. Stetter et al., “CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability,” Thin Solid Films, vol. 451-452, pp. 544–551, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Alberts, S. Zweigart, and H. W. Schock, “Preparation of device quality CuInSe2 by selenization of Se-containing precursors in H2Se atmosphere,” Semiconductor Science and Technology, vol. 12, no. 2, pp. 217–223, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. R. R. Arya, T. C. Lommasson, S. Wiedeman, L. Russell, S. Skibo, and J. Fogleboch, “Solar cells and submodules on CIS prepared by EDCF method,” in Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, pp. 516–520, May 1993. View at Scopus
  14. A. Al-Bassam, “Grain size and conductivity of CuIn1−xGaxSe films,” Materials Chemistry and Physics, vol. 53, 5 pages, 1998. View at Google Scholar
  15. R. Pal, K. K. Chattopadhyay, S. Chaudhuri, and A. K. Pal, “Variation of trap state density and barrier height with Cu/In ratio in CuInSe2 films,” Thin Solid Films, vol. 247, no. 1, pp. 8–14, 1994. View at Google Scholar · View at Scopus
  16. S. Chichibu, T. Mizutani, K. Murakami et al., “Band gap energies of bulk, thin-film, and epitaxial layers of CuInSe2 and CuGaSe2,” Journal of Applied Physics, vol. 83, no. 7, pp. 3678–3689, 1998. View at Google Scholar · View at Scopus
  17. A. Meeder, D. Fuertes Marrón, V. Chu et al., “Photoluminescence and sub band gap absorption of CuGaSe2 thin films,” Thin Solid Films, vol. 403-404, pp. 495–499, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Galdikas and L. Pranevicius, “Surface composition changes of ternary alloys in the non-steady state regime of preferential sputtering,” Nuclear Instruments and Methods in Physics Research Section B, vol. 164-165, pp. 868–872, 2000. View at Google Scholar