Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2014, Article ID 370861, 4 pages
http://dx.doi.org/10.1155/2014/370861
Research Article

Optical and Electrical Properties of Ag-Doped In2S3 Thin Films Prepared by Thermal Evaporation

School of Physics and Information Engineering, Fuzhou University, No. 2 Xueyuan Road, Minhou Shangjie, Fuzhou, Fujian 350116, China

Received 25 March 2014; Accepted 22 June 2014; Published 4 August 2014

Academic Editor: Hao Wang

Copyright © 2014 Peijie Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),” Progress in Photovoltaics: Research and Applications, vol. 11, no. 7, pp. 437–443, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Sáez-Araoz, J. Krammer, S. Harndt et al., “ILGAR In2S3 buffer layers for Cd-free Cu(In,Ga)(S,Se)2 solar cells with certified efficiencies above 16%,” Progress in Photovoltaics: Research and Applications, vol. 20, no. 7, pp. 855–861, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. M. El-Nahass, B. A. Khalifa, H. S. Soliman, and M. A. M. Seyam, “Crystal structure and optical absorption investigations on β-In2S3 thin films,” Thin Solid Films, vol. 515, no. 4, pp. 1796–1801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Sanz, C. Guillén, and M. T. Gutiérrez, “Study of preparation parameters for indium sulfide thin films obtained by modulated flux deposition,” Thin Solid Films, vol. 511-512, pp. 121–124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. I. V. Bodnar and V. F. Gremenok, “Growth and thermal expansion of In2S3 single crystals,” Inorganic Materials, vol. 44, no. 4, pp. 391–395, 2008. View at Google Scholar
  6. H. Spasevska, C. C. Kitts, C. Ancora, and G. Ruani, “Optimised In2S3 thin films deposited by spray pyrolysis,” International Journal of Photoenergy, vol. 2012, Article ID 637943, 7 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Lin, J. Yu, S. Cheng et al., “Band alignment at the In2S3/Cu2ZnSnS4 heterojunction interface investigated by X-ray photoemission spectroscopy,” Applied Physics A, 2014. View at Publisher · View at Google Scholar
  8. M. Mathew, R. Jayakrishnan, P. M. R. Kumar et al., “Anomalous behavior of silver doped indium sulfide thin films,” Journal of Applied Physics, vol. 100, no. 3, Article ID 033504, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Lu, Y. Wu, Y. Wang, and J. Wei, “Optical of antimony-based bismuth-doped thin different annealing temperatures,” Chinese Optics Letters, vol. 9, no. 10, Article ID 102101, 2011. View at Google Scholar
  10. M. Mathew, M. Gopinath, C. S. Kartha, K. P.Vijayakumar, Y. Kashiwaba, and T. Abe, “Tin doping in spray pyrolysed indium sulfide thin films for solar cell applications,” Solar Energy, vol. 84, no. 6, pp. 888–897, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Bhira, H. Essaidi, S. Belgacem, G. Couturier, J. Salardenne, and N. Barreau, “Structural and photoelectrical properties of sprayed β-In2S3 thin films,” Physica Status Solidi, vol. 181, no. 2, pp. 427–435, 2000. View at Google Scholar
  12. N. Barreau, J. C. Bernède, and S. Marsillac, “Study of the new β-In2S3 containing Na thin films. Part II: optical and electrical characterization of thin films,” Journal of Crystal Growth, vol. 241, no. 1-2, pp. 51–56, 2002. View at Publisher · View at Google Scholar · View at Scopus