Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2014, Article ID 518641, 6 pages
http://dx.doi.org/10.1155/2014/518641
Research Article

Enzyme-Free Electrochemical Glucose Sensors Prepared by Dealloying Pd-Ni-P Metallic Glasses

1Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

Received 21 February 2014; Revised 7 March 2014; Accepted 10 March 2014; Published 15 April 2014

Academic Editor: Na Chen

Copyright © 2014 Yuqiao Zeng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, “Evolution of nanoporosity in dealloying,” Nature, vol. 410, no. 6827, pp. 450–453, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Fujita, L. H. Qian, K. Inoke, J. Erlebacher, and M. W. Chen, “Three-dimensional morphology of nanoporous gold,” Applied Physics Letters, vol. 92, no. 25, Article ID 251902, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Ge, R. Wang, P. Liu, and Y. Ding, “Platinum-decorated nanoporous gold leaf for methanol electrooxidation,” Chemistry of Materials, vol. 19, no. 24, pp. 5827–5829, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. Yi, X. Tan, G. Niu et al., “Facile preparation of dendritic Ag-Pd bimetallic nanostructures on the surface of Cu foil for application as a SERS-substrate,” Applied Surface Science, vol. 258, no. 14, pp. 5429–5437, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Erlebacher, “An atomistic description of dealloying porosity evolution, the critical potential, and rate-limiting behavior,” Journal of the Electrochemical Society, vol. 151, no. 610, pp. 616–624, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Yu, Y. Ding, C. Xu, A. Inoue, T. Sakurai, and M. Chen, “Nanoporous metals by dealloying multicomponent metallic glasses,” Chemistry of Materials, vol. 20, no. 14, pp. 4548–4550, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. D. van Noort and C. F. Mandenius, “Porous gold surfaces for biosensor applications,” Biosensors and Bioelectronics, vol. 15, no. 3-4, pp. 203–209, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Liu, L. Huang, L. Zhang, H. Ma, and Y. Ding, “Electrocatalytic oxidation of d-glucose at nanoporous Au and Au-Ag alloy electrodes in alkaline aqueous solutions,” Electrochimica Acta, vol. 54, no. 28, pp. 7286–7293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Ding, Y. J. Kim, and J. Erlebacher, “Nanoporous gold leaf: “Ancient technology”/advanced material,” Advanced Materials, vol. 16, no. 21, pp. 1897–1900, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Xu, Y. Wang, and Z. Zhang, “Potential and concentration dependent electrochemical dealloying of Al2Au in sodium chloride solutions,” Journal of Physical Chemistry C, vol. 116, no. 9, pp. 5689–5699, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Tavakkoli and S. Nasrollahi, “Non-enzymatic glucose sensor based on palladium coated nanoporous gold film electrode,” Australian Journal of Chemistry, vol. 66, pp. 1097–1104, 2013. View at Google Scholar
  12. L. H. Qian and M. W. Chen, “Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation,” Applied Physics Letters, vol. 91, no. 8, Article ID 083105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. J. Forty, “Corrosion micromorphology of noble metal alloys and depletion gilding,” Nature, vol. 282, no. 5739, pp. 597–598, 1979. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Kuang, B. Wu, D. Hu, X. Zhang, and J. Chen, “One-pot synthesis of highly dispersed palladium nanoparticles on acetylenic ionic liquid polymer functionalized carbon nanotubes for electrocatalytic oxidation of glucose,” Journal of Solid State Electrochemistry, vol. 16, no. 2, pp. 759–766, 2012. View at Publisher · View at Google Scholar · View at Scopus