Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2014, Article ID 819057, 7 pages
http://dx.doi.org/10.1155/2014/819057
Research Article

Rare Earth Doped Lanthanum Calcium Borate Polycrystalline Red Phosphors

1School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
2School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China

Received 19 March 2014; Accepted 15 July 2014; Published 5 August 2014

Academic Editor: Somchai Thongtem

Copyright © 2014 H. H. Xiong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Single-phased Sm3+ doped lanthanum calcium borate (SmxLa2−xCaB10O19, SLCB, ) polycrystalline red phosphor was prepared by solid-state reaction method. The phosphor has two main excitation peaks located at 398.5 nm and 469.0 nm, which are nicely in accordance with the emitting wavelengths of commercial near-UV and blue light emitting diode chips. Under the excitation of 398.0 nm, the dominant red emission of Sm3+ in SLCB phosphor is centered at 598.0 nm corresponding to the transition of 4G5/26H7/2. The Eu3+ fluorescence in the red spectral region is applied as a spectroscopic probe to reveal the local site symmetry in the host lattice and, hence, Judd-Ofelt parameters of Eu3+ in the phosphor matrix are derived to be and  cm2, indicating a high asymmetrical and strong covalent environment around rare earth luminescence centers. Herein, the red phosphors are promising good candidates employed in white light emitting diodes (LEDs) illumination.

1. Introduction

White light emitting diodes (LEDs) are considered as the next generation solid-state lighting systems because of their excellent properties such as high efficiency, low power consumption, long lifetime, and lower toxicity [16]. The LED based solid-state lighting techniques have gained great achievements since the white LEDs became commercially available by Nichia Chemical Co. in 1997 [79]. There are three ways to produce white LEDs: (i) combining a blue LED with a yellow phosphor, for example, Y3Al5O12:, (ii) mixing red, green, and blue emissions from three LEDs, and (iii) exciting red/green/blue tricolor phosphors with a near-UV LED (370–410 nm). The third is a flexible and convenient way to obtain high quality white LEDs due to the following advantages, generated white color by phosphors, that is, high tolerance to UV chips’ color variation and excellent color rendering index [10]. The main tricolor phosphors for near-UV InGaN-based LEDs are still under developing just as BaMgAl10O17: for blue, ZnS:/ for green, and Y2O2S: for red [1113]. Among them, the red phosphor has received much attention due to the fact that it can improve color rendering index; therefore it is meaningful to develop numerous red phosphors with higher efficiency to improve the performance of white LEDs [1317].

During the past decades, rare earth ions doped in various host materials have been widely studied due to their characteristic luminescence properties. Among the rare earth ions, , , , and are important activator ions for producing visible light [1825]. activated luminescent materials have received much attention at present [26, 27]. They show bright emissions in orange and red regions attributed to the transitions from the excited state 4G5/2 to the ground state 6H5/2 and the other state (, and 11/2), which can be used in high density optical storage, temperature sensors, under sea communication, various fluorescent devices, color display, and visible solid-state lasers [2, 2830]. Luminescence of is especially useful to probe the local structure of luminescent centers in a host lattice because of its simple energy level structure, great sensitivity to ligand field, and similar lanthanide chemical properties to the other rare earth ions [3133].

Growing interest recently has been focused on luminescence of trivalent rare earth ions in phosphates, tungstates, borates, molybdates, and aluminates, among which rare earth doped borates are especially attractive because of their wide UV transparency, exceptional optical damage thresholds, excellent chemical and thermal stability, and high luminescence efficiency [3442]. Hence, a borate phosphor which efficiently emits red fluorescence under the UV and blue light excitation is of great significance to be synthesized for practical applications. The compound La2CaB10O19 (LCB) is chemically stable and nonhygroscopic, which belongs to the monoclinic system with the space group of C2 and the lattice parameters  nm,  nm,  nm, °, and ° [43, 44]. The effect of doping in LCB host is seductive to be developed as a red phosphor for solid-state LED lighting.

Herein, activated lanthanum calcium borate phosphor (SmxLa2−xCaB10O19, SLCB) was prepared by the solid-state reaction technique, and an attempt was made to investigate its luminescence characteristics. was adopted as a probe in ELCB (EuxLa2−xCaB10O19, ELCB) phosphor through the calculation of parameters to reflect the local microenvironment around the rare earth ions in the compounds. The bright red fluorescence obtained from SLCB phosphor suggests that the as-prepared phosphor is a promising red luminescent material for white LEDs.

2. Experiments

SLCB phosphor was synthesized by a solid-state reaction route at high temperature using the following chemical reaction:

Here, the x value of SLCB sample is the molar replacement of by , which is adopted to be 0.06 to maintain the brightness of phosphors and avoid the fluorescence quenching because of high concentration doping. Reagents La2O3 (99.99%), CaCO3 (99.99%), H3BO3 (99.9%), and Sm2O3 (99.99%) were used as raw materials. They were weighed according to the stoichiometric proportion, except for H3BO3 with an excess of 6.5 wt% to compensate for the volatilization of B2O3 at high temperature. After being ground and mixed thoroughly in an agate mortar, the mixture was placed into an electric furnace and preheated at 500°C for 10 h. Being cooled and ground again, the mixture was sintered at 930°C for 24 h twice with the intermediate grinding.

The crystallographic structure of SLCB powders was characterized by X-ray powder diffraction analysis using a D/Max-3B X-ray diffractometer with 40 kV, 20 mA. The excitation and emission spectra were recorded on a Jobin Yvon FluoroLog-3 spectrophotometer with a R928 photomultiplier tube (PMT) detector, and a commercial CW Xe-lamp was used as pump source. A JSM-6460LV scanning electron microscopy was used for the observation of particle morphology. The photographs of the samples were taken by a Sony digital camera. ELCB phosphor was prepared by the same way except that Eu2O3 was used instead of Sm2O3 and the measurements were carried out at the same condition as SLCB phosphor.

3. Results and Discussion

3.1. X-Ray Diffraction Analysis

To check the phase purity and the structure of the sample, the powder X-ray diffraction (XRD) measurement for the sample was carried out. Figure 1 presents a comparison between the experimental result for SLCB phosphor and JCPDS card 54-0033 (La2CaB10O19). The observed peaks are in good agreement with the JCPDS data indicating that the main phase of the prepared phosphor is LCB. Because of lanthanide contraction, rare earth ions have similar radius, coordination environment, and physical-chemical properties. When in the lattice is replaced by , the crystal structure does not change dramatically. The doped product crystallizes as monoclinic structure with a space group of C2 and lattice parameters values  nm,  nm,  nm, and °, which is almost consistent with pure LCB phase [44, 45]. These results show that the has been incorporated into LCB lattices successfully and the small amount of ions has negligible effect on the basic crystal structure of LCB. The same result was verified in ELCB phosphor.

819057.fig.001
Figure 1: X-ray diffraction patterns of SLCB phosphor and the referenced LCB (JCPDS number 54-0033).
3.2. Photoluminescence Characteristics of SLCB Phosphor

The excitation spectrum of SLCB phosphor monitored at 598.0 nm consists of several bands peaking at 245.0, 340.0, 358.0, 370.0, 398.5, 412.5, and 469.0 nm as depicted in Figure 2. The broadband around 245.0 nm is due to the charge transfer (CT) band of –O2− [45, 46]. The other excitation peaks at 340.0, 358.0, 370.0, 398.5, 412.5, and 469.0 nm have been assigned to the 4f-4f inner shell transitions of [4749]. The efficient excited wavelength range of in SLCB phosphor covers the whole long-wavelength UV, purple, blue, and bluish-green spectral regions. This suggests that the effective excitation range matches the output wavelengths of InGaN-based LED chips well; thus the phosphors have potential application in the solid-state LED lighting.

819057.fig.002
Figure 2: Excitation spectrum of SLCB phosphor ( nm).

Figure 3 is the emission spectrum of SLCB phosphor excited by 398.0 nm. The characteristic emissions of SLCB phosphor consist of five emission bands, which are attributed to the transitions from 4G5/2 state to (, and 13/2) states of . Among these, the strongest emission peak located at 598.0 nm originates from the typical transition 4G5/26H7/2 and the other peaks at 562.0, 646.5, 706.0, and 735.0 nm are attributed to the transitions of 4G5/26H5/2, 4G5/26H9/2, 4G5/26H11/2, and 4G5/26H13/2, respectively [5054]. Among these emission peaks, the transition emission 4G5/26H7/2 (598.0 nm, orangish red) with is a magnetic dipole (MD) allowed one, but it is also electric dipole (ED) dominated one and the other transition 4G5/26H9/2 (646.5 nm, red) is purely an ED one. The MD transition does not appreciably depend on the chemical surroundings of the luminescent center and its symmetry; however, the ED transition belongs to hypersensitive transitions. Generally, the intensity ratio of ED to MD transitions has been used to evaluate the symmetry of the local environment of the trivalent 4f ions. The greater the intensity of the ED transition, the more the asymmetry nature [55]. In this work, the emission due to 4G5/26H9/2 (ED) transition of is more intense than 4G5/26H5/2, specifying the asymmetric nature of host matrix. And the three main emission peaks of SLCB phosphor always split just similarly to the reports of LiBaBO3: [56], Gd2MoO6: [57], and GdVO4: [58]. Those splits result from the crystal field effects, and the spilt extents are related to the structure characteristic of the crystal field.

819057.fig.003
Figure 3: Emission spectrum of SLCB phosphor ( nm). Inset of (a): fluorescence from SLCB phosphor under 365.0 nm radiation. Inset of (b): SLCB phosphor under natural light.
3.3. Intensity Parameters of the Spectroscopic Probe in ELCB Phosphor

Figure 4 presents the emission spectrum of ELCB phosphor excited at 391.0 nm in the wavelength of 560–720 nm. There are several typical emission bands around 560–720 nm assigned to the transitions of [5963], of which the red emission band at 617 nm is the most intense one due to the electric dipole transition 5D07F2.

819057.fig.004
Figure 4: Emission spectrum of ELCB phosphor ( nm). Inserted photo: fluorescence from ELCB phosphor under 365.0 nm excitation.

Luminescence of is especially useful to probe the local symmetry and bonding characteristics of luminescent centers in a host lattice on account of its unsplit 7F0 ground state and relatively simple energy level scheme. The symmetry of the crystal site in which is located can be determined by the intensity ratio between 5D07F2 and 5D07F1 transition emissions in ELCB [6467]. Here, the ratio is 1.9076 in ELCB phosphor from Figure 4, indicating that 5D07F2 electric dipole transition is dominated and is in an inversion asymmetrical site.

Moreover, in order to further identify the asymmetry of in ELCB phosphor, the intensity parameters are calculated. Generally, intensity parameters are derived from absorption spectra; however, in consideration of the special energy level structure of , they should be calculated from the emission spectra because the recorded absorption peaks are not enough to get accurate results [6870]. The transitions of from 5D0 to 7FJ  (, and 6) are electronic dipole allowed ones and hypersensitive to the local environment around . The spontaneous emission probability from to is given by the following expression: where is the electron charge, is the emission peak wavenumber, is the Planck constant, is the refractive index, is the degeneracy of the excited state, and is the square of the reduced matrix elements of the tensor operator, which connects the initial state with the final state and is considered to be independent of host matrix. The 5D07F1 transition of is magnetic-dipole allowed one and insensitive to the host matrix. The spontaneous emission probability of it () is given by where the magnetic dipole line strength is constant and independent of the matrix, so the value of can be estimated by the value of fluoride glass (). The relationship is where and are the refractive indices of ELCB crystal [71] and fluoride glass [72], respectively.

Based on the calculated , the selection rules, and the characteristic of transition intensities of , each of the parameters decides the intensities of transitions because the remaining two are zero. Thus, the can be estimated from the intensity ratios of 5D07F2,4 transitions to 5D07F1 transition as The calculated ( and 4) values of in ELCB phosphor are 3.62 × 10−20 and 1.97 × 10−20 cm2, respectively. This result confirms a high inversion asymmetric and strong covalent environment of in the phosphor. The value of cannot be given since the 5D07F6 emission is unable to be experimentally detected in this work.

Figure 5 presents the SEM pictures of the as-prepared SLCB and ELCB phosphors. The two samples have similar morphology and particle size distribution. Also, they have good dispersion and relatively narrow size distribution with the average size of about 0.5~6 μm. However, the particles have no regular and uniform shape, and some of them are agglomerated. The main reasons are that the primary nanocrystals with high energy would assemble to minimize the surface energy and they would be sintered in the heat treatment process.

fig5
Figure 5: SEM images of as-prepared SLCB (a) and ELCB (b).

4. Conclusion

A red emitting phosphor SLCB (SmxLa2−xCaB10O19) was prepared by solid-state reaction method in the air. XRD analysis indicates that the crystal belongs to a monoclinic system with unit cell parameters  nm,  nm,  nm, and °. The excitation spectrum shows that the phosphor can be efficiently excited by the commercial near-UV and blue light emitting diodes. Under the excitation of 398.0 nm, the phosphor presented red luminescence with efficient emissions at 562.0, 598.0, 646.5, 706.0, and 735.0 nm, corresponding to 4G5/26 (, and 13/2) transitions, respectively. is used as a spectroscopic probe for the microstructure of ELCB (EuxLa2−xCaB10O19) phosphor and, thus, Judd-Ofelt parameters of in ELCB phosphor are derived to be 3.62 × 10−20 and 1.97 × 10−20 cm2, indicating a high asymmetrical and covalent environment around rare earth luminescence centers in the host lattice. The red fluorescence suggests that the two phosphors are potential candidates for light emitting diode applications.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant no. 61275057) and the Undergraduate Training Programs for Innovation and Entrepreneurship of Dalian Polytechnic University (Grant no. 2013013).

References

  1. F. Yang, Z. P. Yang, Q. M. Yu, Y. F. Liu, X. Li, and F. C. Lu, “Sm3+-doped Ba3Bi(PO4)3 orange reddish emitting phosphor,” Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, vol. 105, pp. 626–631, 2013. View at Publisher · View at Google Scholar
  2. D. Kang, H. S. Yoo, S. H. Jung, H. Kim, and D. Y. Jeon, “Synthesis and photoluminescence properties of a novel red-emitting Na2Y2Ti3O10:Eu3+,Sm3+ phosphor for white-light-emitting diodes,” Journal of Physical Chemistry C, vol. 115, no. 49, pp. 24334–24340, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Optics Letters, vol. 34, no. 1, pp. 1–3, 2009. View at Publisher · View at Google Scholar
  4. Z. Cui, R. Ye, D. Deng et al., “Eu2+/Sm3+ ions co-doped white light luminescence SrSiO3 glass-ceramics phosphor for White LED,” Journal of Alloys and Compounds, vol. 509, no. 8, pp. 3553–3558, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. H. Song, G. Jia, M. Yang, Y. J. Huang, H. P. You, and H. J. Zhang, “Sr3Al2O5Cl2:Ce3+,Eu2+: a potential tunable yellow-to-white-emitting phosphor for ultraviolet light emitting diodes,” Applied Physics Letters, vol. 49, Article ID 091902, 2009. View at Google Scholar
  6. H. Yamamoto, “White LED phosphors: the next step,” in Optical Components and Materials VII, Proceedings of SPIE, 2010. View at Publisher · View at Google Scholar
  7. M. K. Jung, W. J. Park, and D. H. Yoon, “Photoluminescence characteristics of red phosphor Eu3+, Sm3+ co-doped Y2O3 for white light emitting diodes,” Sensors and Actuators B: Chemical, vol. 126, no. 1, pp. 328–331, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Applied Physics Letters, vol. 67, p. 1868, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. H. J. Qian, J. Y. Zhang, and L. Q. Yin, “Crystal structure and optical properties of white light-emitting Y2WO6:Sm3+ phosphor with excellent color rendering,” RSC Advances, vol. 3, no. 23, pp. 9029–9034, 2013. View at Publisher · View at Google Scholar
  10. M. M. Haque, H. I. Lee, and D. K. Kim, “Luminescent properties of Eu3+-activated molybdate-based novel red-emitting phosphors for LEDs,” Journal of Alloys and Compounds, vol. 481, pp. 792–796, 2009. View at Google Scholar
  11. I. Pekgozlu, S. Cakar, and J. Lumin, “Photoluminescence properties of Li6CaB3O8.5: M3+ (M3+: Dy and Sm),” Journal of Luminescence, vol. 132, no. 9, pp. 2312–2317, 2012. View at Google Scholar
  12. H. Yu, D. Deng, D. Zhou et al., “Ba2Ca(PO4)2:Eu2+ emission-tunable phosphor for solid-state lighting: luminescent properties and application as white light emitting diodes,” Journal of Materials Chemistry C, vol. 1, no. 35, pp. 5577–5582, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid-state lighting: the system NaM(WO4)2−x(MoO4)x:Eu3+ (M, Gd, Y, Bi),” Chemical Physics Letters, vol. 387, pp. 2–6, 2004. View at Publisher · View at Google Scholar
  14. G. R. Dillip, S. J. Dhoble, L. Manoj, C. Madhukar Reddy, and B. Deva Prasad Raju, “A potential red emitting K4Ca(PO4)2: Eu3+ phosphor for white light emitting diodes,” Journal of Luminescence, vol. 132, no. 11, pp. 3072–3076, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. C. B. Azevedo, É. A. De Souza, E. H. De Faria et al., “Optical properties of Eu-doped hybrid materials prepared from dimethyl and methyl alkoxides precursors,” Journal of Luminescence, vol. 134, pp. 551–557, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. G. Su, L. P. Li, and G. S. Li, “Synthesis and optimum luminescence of CaWO4-based red phosphors with codoping of Eu3+ and Na+,” Chemistry of Materials, vol. 20, no. 19, pp. 6060–6067, 2008. View at Publisher · View at Google Scholar
  17. R. J. Wiglusz, T. Grzyb, A. Lukowiak, A. Bednarkiewicz, S. Lis, and W. Strek, “Tuning luminescence properties of Eu3+ doped CaAl2O4 nanophosphores with Na+ co-doping,” Journal of Luminescence, vol. 133, pp. 102–109, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. N. S. Hussain, G. Hungerford, R. El-Mallawany et al., “Absorption and emission analysis of RE3+(Sm3+ and Dy3+): Lithium boro tellurite glasses,” Journal of Nanoscience and Nanotechnology, vol. 9, no. 6, pp. 3672–3677, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. D. Que, Z. P. Ci, Y. H. Wang, G. Zhu, Y. R. Shi, and S. Y. Xin, “Synthesis and luminescent properties of Ca2La8(GeO4)6O2:RE3+ (RE3+=Eu3+, Tb3+, Dy3+, Sm3+, Tm3+) phosphors,” Journal of Luminescence, vol. 144, pp. 64–68, 2013. View at Google Scholar
  20. A. Tang, D. F. Zhang, and L. Yang, “Photoluminescence characterization of a novel red-emitting phosphor In2(MoO4)3:Eu3+ for white light emitting diodes,” Journal of Luminescence, vol. 132, no. 6, pp. 1489–1492, 2012. View at Google Scholar
  21. S. A. Naidu, S. Boudin, U. V. Varadaraju, and B. Raveau, “Eu3+ and Tb3+ emission in molybdenophosphate Na2Y(MoO4)(PO4),” Journal of the Electrochemical Society, vol. 159, no. 4, pp. J122–J126, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. X. L. Dong, J. H. Zhang, X. Zhang, Z. D. Hao, and S. Z. Lv, “Synthesis and photoluminescence properties of Eu2+ doped Sr9Sc(PO4)7 phosphors for white light-emitting diodes,” Ceramics International, vol. 40, no. 4, pp. 5421–5423, 2014. View at Publisher · View at Google Scholar
  23. P. Abdul Azeem, M. Kalidasan, R. R. Reddy, and K. Ramagopal, “Spectroscopic investigations on Tb3 doped lead fluoroborate glasses,” Optics Communications, vol. 285, no. 18, pp. 3787–3791, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Cavalli, P. Boutinaud, R. Mahiou, M. Bettinelli, and P. Dorenbos, “Luminescence dynamics in Tb3+-doped CaWO4 and CaMoO4 crystals,” Inorganic Chemistry, vol. 49, no. 11, pp. 4916–4921, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Boukhris, M. Hidouri, B. Glorieux, and M. Ben Amara, “Correlation between structure and photoluminescence of the europium doped glaserite-type phosphate Na2SrMg(PO4)2,” Materials Chemistry and Physics, vol. 137, no. 1, pp. 26–33, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Zhang, C. H. Lu, L. Y. Sun, Z. Z. Xu, and Y. R. Ni, “Influence of Sm2O3 on the crystallization and luminescence properties of boroaluminosilicate glasses,” Materials Research Bulletin, vol. 44, pp. 179–183, 2009. View at Publisher · View at Google Scholar
  27. M. Sobczyk, P. Starynowicz, R. Lisiecki, and W. Ryba-Romanowski, “Synthesis, optical spectra and radiative properties of Sm2O3:PbO:P2O5 glass materials,” Optical Materials, vol. 30, no. 10, pp. 1571–1575, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Venkatramu, P. Babu, C. K. Jayasankar, T. Tröster, W. Sievers, and G. Wortmann, “Optical spectroscopy of Sm3+ ions in phosphate and fluorophosphate glasses,” Optical Materials, vol. 29, no. 11, pp. 1429–1439, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Optical Materials, vol. 33, no. 5, pp. 688–691, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. X. M. Zhang and H. J. Seo, “Luminescence properties of novel Sm3+, Dy3+ doped LaMoBO6 phosphors,” Journal of Alloys and Compounds, vol. 509, pp. 2007–2010, 2011. View at Publisher · View at Google Scholar
  31. A. M. Pires, M. F. Santos, M. R. Davolos, and E. B. Stucchi, “The effect of Eu3+ ion doping concentration in Gd2O3 fine spherical particles,” Journal of Alloys and Compounds, vol. 344, no. 1-2, pp. 276–279, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Driesen, V. K. Tikhomirov, and C. Gorller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” Journal of Applied Physics, vol. 102, Article ID 024312, 2007. View at Publisher · View at Google Scholar
  33. C. H. Yan, L. D. Sun, C. S. Liao et al., “Eu3+ ion as fluorescent probe for detecting the surface effect in nanocrystals,” Applied Physics Letters, vol. 82, no. 20, pp. 3511–3513, 2003. View at Publisher · View at Google Scholar
  34. R. Stefani, A. D. Maia, E. E. S. Teotonio, M. A. F. Monteiro, M. C. F. C. Felinto, and H. F. Brito, “Photoluminescent behavior of SrB4O7:RE2+ (RE=Sm and Eu) prepared by Pechini, combustion and ceramic methods,” Journal of Solid State Chemistry, vol. 179, no. 4, pp. 1086–1092, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Won, H. Jang, W. Im, D. Jeon, and J. Lee, “Red-emitting LiLa2O2BO3: Sm3+, Eu3+ phosphor for near-ultraviolet light-emitting diodes-based solid-state lighting,” Journal of The Electrochemical Society, vol. 155, no. 9, pp. J226–J229, 2008. View at Publisher · View at Google Scholar
  36. M. Ayvacıklı, A. Ege, and N. Can, “Radioluminescence of SrAl2O 4:Ln3+ (Ln = Eu, Sm, Dy) phosphor ceramic,” Optical Materials, vol. 34, no. 1, pp. 138–142, 2011. View at Google Scholar
  37. Y. M. Yang, Z. Y. Ren, Y. C. Tao, Y. M. Cui, and H. Yang, “Eu3+ emission in SrAl2B2O7 based phosphors,” Current Applied Physics, vol. 9, pp. 618–621, 2009. View at Publisher · View at Google Scholar
  38. D. Tu, Y. J. Liang, R. Liu, Z. Cheng, F. Yang, and W. L. Yang, “Photoluminescent properties of LiSrxBa1−xPO4:RE3+ (RE = Sm3+, Eu3+) f–f transition phosphors,” Journal of Alloys and Compounds, vol. 509, no. 18, pp. 5596–5599, 2011. View at Publisher · View at Google Scholar
  39. J. H. Hao, J. Gao, and M. Cocivera, “Tuning of the blue emission from europium-doped alkaline earth chloroborate thin films activated in air,” Applied Physics Letters, vol. 82, no. 17, pp. 2778–2780, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. A. E. Henkes and R. E. Schaak, “Synthesis of nanocrystalline REBO3 (RE=Y, Nd, Sm, Eu, Gd, Ho) and YBO3:Eu using a borohydride-based solution precursor route,” Journal of Solid State Chemistry, vol. 181, no. 12, pp. 3264–3268, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. G. F. Ju, Y. H. Hu, H. Y. Wu et al., “A red-emitting heavy doped phosphor Li6Y(BO3)3:Eu3+ for white light-emitting diodes,” Optical Materials, vol. 33, pp. 1297–1301, 2011. View at Publisher · View at Google Scholar
  42. J. Yang, C. M. Zhang, C. X. Li, Y. G. Yu, and J. Lin, “Energy transfer and tunable luminescence properties of Eu3+ in TbBO3 microspheres via a facile hydrothermal process,” Inorganic Chemistry, vol. 47, no. 16, pp. 7262–7270, 2008. View at Google Scholar
  43. Y. C. Wu, J. G. Liu, P. Z. Fu et al., “A new lanthanum and calcium borate La2CaB10O19,” Chemistry of Materials, vol. 13, no. 3, pp. 753–755, 2001. View at Publisher · View at Google Scholar
  44. H. Lin, D. Hou, L. Li, Y. Tao, and H. Liang, “Luminescence and site occupancies of Eu3+ in La2CaB10O19,” Dalton Transactions, vol. 42, no. 36, pp. 12891–12897, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Chen, J. Wang, C. M. Liu, X. J. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Applied Physics Letters, vol. 98, Article ID 081917, 2011. View at Publisher · View at Google Scholar
  46. V. Kumar, A. K. Bedyal, S. S. Pitale, O. M. Ntwaeaborwa, and H. C. Swart, “Synthesis, spectral and surface investigation of NaSrBO3: Sm3+ phosphor for full color down conversion in LEDs,” Journal of Alloys and Compounds, vol. 554, pp. 214–220, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Zhou and B. Yan, “RE2(MO4)3:Ln3+ (RE = Y, La, Gd, Lu; M = W, Mo; Ln = Eu, Sm, Dy) microcrystals: controlled synthesis, microstructure and tunable luminescence,” CrystEngComm, vol. 15, no. 28, pp. 5694–5702, 2013. View at Publisher · View at Google Scholar · View at Scopus
  48. S. A. Yan, J. W. Wang, Y. S. Chang, W. S. Hwang, and Y. H. Chang, “Synthesis and luminescence properties of Ln3+ (Ln3+ = Er3+, Sm3+)-doped barium lanthanum tungstate BaLa2WO7 phosphors,” Optical Materials, vol. 34, no. 1, pp. 147–151, 2011. View at Publisher · View at Google Scholar
  49. Z. G. Xia and D. M. Chen, “Synthesis and luminescence properties of BaMoO4:Sm3+ phosphors,” Journal of the American Ceramic Society, vol. 93, no. 5, pp. 1397–1401, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. F. He, P. Yang, D. Wang et al., “Hydrothermal synthesis, dimension evolution and luminescence properties of tetragonal LaVO4:Ln (Ln = Eu3+, Dy3+, Sm3+) nanocrystals,” Dalton Transactions, vol. 40, no. 41, pp. 11023–11030, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. G. S. R. Raju, J. Y. Park, H. C. Jung et al., “Excitation induced efficient luminescent properties of nanocrystalline Tb3+/Sm3+:Ca2Gd8Si6O26 phosphors,” Journal of Materials Chemistry, vol. 21, no. 17, pp. 6136–6139, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. X. Lin, X. S. Qiao, and X. P. Fan, “Synthesis and luminescence properties of a novel red SrMoO4:Sm3+,R+phosphor,” Solid State Sciences, vol. 13, no. 3, pp. 579–583, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. Z. Yang, Z. Zhao, M. Que, and Y. Wang, “Photoluminescence and thermal stability of β-SiAlON:Re (Re = Sm, Dy) phosphors,” Optical Materials, vol. 35, no. 7, pp. 1348–1351, 2013. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Puchalska and E. Zych, “The effect of charge compensation by means of Na+ ions on the luminescence behavior of Sm3+-doped CaAl4O7 phosphor,” Journal of Luminescence, vol. 132, no. 3, pp. 826–831, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Lakshminarayana, R. Yang, J. R. Qiu, M. G. Brik, G. A. Kumar, and I. V. Kityk, “White light emission from Sm3+/Tb3+ codoped oxyfluoride aluminosilicate glasses under UV light excitation,” Journal of Physics D: Applied Physics, vol. 42, no. 1, Article ID 015414, 2009. View at Publisher · View at Google Scholar
  56. P. L. Li, Z. J. Wang, Z. P. Yang, Q. L. Guo, and X. Li, “Emission features of LiBaBO3:Sm3+ red phosphor for white LED,” Materials Letters, vol. 63, no. 9-10, pp. 751–753, 2009. View at Publisher · View at Google Scholar
  57. M. N. Huang, Y. Y. Ma, X. Y. Huang, S. Ye, and Q. Y. Zhang, “The luminescence properties of Bi3+ sensitized Gd2MoO6:RE3+ (RE = Eu or Sm) phosphors for solar spectral conversion,” Spectrochimica Acta A, vol. 115, pp. 767–771, 2013. View at Publisher · View at Google Scholar
  58. S. Tang, M. Huang, J. Wang, F. Yu, G. Shang, and J. Wu, “Hydrothermal synthesis and luminescence properties of GdVO 4:Ln3+ (Ln = Eu, Sm, Dy) phosphors,” Journal of Alloys and Compounds, vol. 513, pp. 474–480, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Zhang, C. Guo, and H. Jing, “Photoluminescence and cathode-luminescence of Eu3+-doped NaLnTiO4 (Ln = Gd and Y) phosphors,” RSC Advances, vol. 3, no. 20, pp. 7495–7502, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Q. An, J. Zhang, M. Liu, S. Chen, and S. W. Wang, “Preparation and photoluminescence of Sm3+ and Eu3+ doped Lu2O3 phosphor,” Optical Materials, vol. 30, no. 6, pp. 957–960, 2008. View at Publisher · View at Google Scholar
  61. S. C. Prashantha, B. N. Lakshminarasappa, and B. M. Nagabhushana, “Photoluminescence and thermoluminescence studies of Mg2SiO4:Eu3+ nano phosphor,” Journal of Alloys and Compounds, vol. 509, no. 42, pp. 10185–10189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. L. Chen, G. T. Yang, J. Q. Liu, X. Shu, G. B. Zhang, and Y. Jiang, “Photoluminescence properties of and in host under vacuum ultraviolet/ultraviolet excitation,” Journal of Applied Physics, vol. 105, no. 1, Article ID 013513, 2009. View at Publisher · View at Google Scholar
  63. A. Dhahri, K. Horchani-Naifer, A. Benedetti, F. Enrichi, and M. Ferid, “Combustion synthesis and photoluminescence of Eu3+ doped LaAlO3 nanophosphors,” Optical Materials, vol. 34, no. 11, pp. 1742–1746, 2012. View at Publisher · View at Google Scholar
  64. S. Mishra, R. Rajeswari, N. Vijayan et al., “Probing the structure, morphology and multifold blue absorption of a new red-emitting nanophosphor for LEDs,” Journal of Materials Chemistry C, vol. 1, no. 37, pp. 5849–5855, 2013. View at Publisher · View at Google Scholar · View at Scopus
  65. W. A. Pisarski, J. Pisarska, G. Dominiak-Dzik, and W. Ryba-Romanowski, “Transition metal (Cr3+) and rare earth (Eu3+, Dy3+) ions used as a spectroscopic probe in compositional-dependent lead borate glasses,” Journal of Alloys and Compounds, vol. 484, no. 1-2, pp. 45–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. L. A. Bueno, A. S. Gouveia-Neto, E. B. da Costa, Y. Messaddeq, and S. J. L. Ribeiro, “Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe,” Journal of Physics Condensed Matter, vol. 20, no. 14, Article ID 145201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Ellens, F. Zwaschka, F. Kummer, A. Meijerink, M. Raukas, and K. Mishra, “Sm2+ in BAM: fluorescent probe for the number of luminescing sites of Eu2+ in BAM,” Journal of Luminescence, vol. 93, no. 2, pp. 147–153, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Huang, J. Loriers, and P. Porcher, “Spectroscopic properties of some Eu3+ doped scheelite-related rare earth sesquimolybdates and sesquitungstates,” Journal of Solid State Chemistry, vol. 48, no. 3, pp. 333–345, 1983. View at Google Scholar
  69. M. Karbowiak, A. Mech, A. Bednarkiewicz, and W. Stręk, “Synthesis and properties of solution-processed Eu3+:BaY2F8,” Journal of Luminescence, vol. 114, no. 1, pp. 1–8, 2005. View at Publisher · View at Google Scholar
  70. Y. Tian, B. J. Chen, R. N. Hua et al., “Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor,” Journal of Applied Physics, vol. 109, Article ID 053511, 2011. View at Publisher · View at Google Scholar
  71. M. Dejneka, E. Snitzer, and R. E. Riman, “Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses,” Journal of Luminescence, vol. 65, no. 5, pp. 227–245, 1995. View at Google Scholar · View at Scopus
  72. R. Guo, Y. C. Wu, P. Z. Fu, and F. L. Jing, “Optical transition probabilities of Er3+ ions in La2CaB10O19 crystal,” Chemical Physics Letters, vol. 416, no. 1–3, pp. 133–136, 2005. View at Publisher · View at Google Scholar