Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2014, Article ID 970468, 11 pages
http://dx.doi.org/10.1155/2014/970468
Research Article

Effect of Filler Content on the Performance of Epoxy/PTW Composites

Department of Mechanical Engineering, St. Joseph Engineering College, Mangalore, Karnataka 575 028, India

Received 30 May 2013; Revised 6 February 2014; Accepted 14 March 2014; Published 27 April 2014

Academic Editor: Steve Bull

Copyright © 2014 Mudradi Sudheer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Wang, S. R. Zheng, and Y. P. Zheng, Polymer Matrix Composites and Technology, Woodhead Publishing Limited (Science Press), Cambridge, UK, 2011.
  2. S. Y. Fu, B. Lauke, and Y. W. Mai, Science and Engineering of Short Fibre Reinforced Polymer Composites, Woodhead Publishing Limited (CRC Press), Cambridge, UK, 2009.
  3. J. Abenojar, M. A. Martínez, F. Velasco, V. Pascual-Sánchez, and J. M. Martín-Martínez, “Effect of boron carbide filler on the curing and mechanical properties of an epoxy resin,” Journal of Adhesion, vol. 85, no. 4-5, pp. 216–238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. S. Bhagyashekar and R. M. V. G. K. Rao, “Effects of material and test parameters on the wear behavior of particulate filled composites part 1: SiC-epoxy and Gr-epoxy composites,” Journal of Reinforced Plastics and Composites, vol. 26, no. 17, pp. 1753–1768, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Shi, M. Q. Zhang, M. Z. Rong, B. Wetzel, and K. Friedrich, “Sliding wear behavior of epoxy containing nano-Al2O3 particles with different pretreatments,” Wear, vol. 256, no. 11-12, pp. 1072–1081, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. O. Jacobs, R. Jaskulka, F. Yang, and W. Wu, “Sliding wear of epoxy compounds against different counterparts under dry and aqueous conditions,” Wear, vol. 256, no. 1-2, pp. 9–15, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Li, Y. Gao, J. Xing, Y. Wang, and L. Fang, “Wear reduction mechanism of graphite and MoS2 in epoxy composites,” Wear, vol. 257, no. 3-4, pp. 279–283, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. Q. L. Ji, M. Q. Zhang, M. Z. Rong, B. Wetzel, and K. Friedrich, “Friction and wear of epoxy composites containing surface modified SiC nanoparticles,” Tribology Letters, vol. 20, no. 2, pp. 115–123, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. D. D. Rodrigues and J. G. Broughton, “Silane surface modification of boron carbide in epoxy composites,” International Journal of Adhesion & Adhesives, vol. 46, pp. 62–73, 2013. View at Google Scholar
  10. S. Shokoohi, A. Arefazar, and R. Khosrokhavar, “Silane coupling agents in polymer-based reinforced composites: a review,” Journal of Reinforced Plastics and Composites, vol. 27, no. 5, pp. 473–485, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. P. C. Ma, J. Kim, and B. Z. Tang, “Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites,” Composites Science and Technology, vol. 67, no. 14, pp. 2965–2972, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. D. I. Tee, M. Mariatti, A. Azizan, C. H. See, and K. F. Chong, “Effect of silane-based coupling agent on the properties of silver nanoparticles filled epoxy composites,” Composites Science and Technology, vol. 67, no. 11-12, pp. 2584–2591, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. V. Milewski and H. S. Katz, “Whiskers,” in Handbook of Reinforcements for Plastics, pp. 205–229, Van Nostrand Reinhold, New York, NY, USA, 1987. View at Google Scholar
  14. T. Zaremba and D. Witkowska, “Methods of manufacturing of potassium titanate fibres and whiskers. A review,” Materials Science- Poland, vol. 28, no. 1, pp. 25–41, 2010. View at Google Scholar · View at Scopus
  15. Z. Zhu, L. Xu, and G. Chen, “Effect of different whiskers on the physical and tribological properties of non-metallic friction materials,” Materials and Design, vol. 32, no. 1, pp. 54–61, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. S. J. Kim, M. H. Cho, R. H. Basch, J. W. Fash, and H. Jang, “Tribological properties of polymer composites containing barite (BaSO4) or potassium titanate (K2O.6(TiO2)),” Tribology Letters, vol. 17, no. 3, pp. 655–661, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. K. H. Cho, M. H. Cho, S. J. Kim, and H. Jang, “Tribological properties of potassium titanate in the brake friction material; morphological effects,” Tribology Letters, vol. 32, no. 1, pp. 59–66, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Feng, H. Wang, Y. Shi, D. Chen, and X. Lu, “The effects of the size and content of potassium titanate whiskers on the properties of PTW/PTFE composites,” Materials Science and Engineering A, vol. 448, no. 1-2, pp. 253–258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Chen, Q. Wang, T. Wang, and X. Pei, “Preparation, damping and thermal properties of potassium titanate whiskers filled castor oil-based polyurethane/epoxy interpenetrating polymer network composites,” Materials and Design, vol. 32, no. 2, pp. 803–807, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Sudheer, R. Prabhu, K. Raju, and T. Bhat, “Optimization of dry sliding wear performance of ceramic whisker filled epoxy composites using Taguchi approach,” Advances in Tribology, vol. 2012, Article ID 431903, 9 pages, 2012. View at Publisher · View at Google Scholar
  21. I. Taha, A. El-Sabbagh, and G. Ziegmann, “Modelling of strength and stiffness behaviour of natural fibre reinforced polypropylene composites,” Polymers and Polymer Composites, vol. 16, no. 5, pp. 295–302, 2008. View at Google Scholar · View at Scopus
  22. A. Patnaik, A. Satapathy, S. S. Mahapatra, and R. R. Dash, “A comparative study on different ceramic fillers affecting mechanical properties of glass polyester composites,” Journal of Reinforced Plastics and Composites, vol. 28, no. 11, pp. 1305–1318, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Nielsen and R. Landel, Mechanical Properties of Polymers and Composites, Marcel Decker, New York, NY, USA, 2nd edition, 1994.
  24. M. Qu, X. Jian, W. He, and G. Liao, “Performance of potassium titanate whisker reinforced PPESK composites,” Journal of Materials Science and Technology, vol. 20, no. 4, pp. 445–447, 2004. View at Google Scholar · View at Scopus
  25. K. Friedrich, S. Fakirov, and Z. Zhang, Polymer Composites from Nano- to Macroscale, Springer, New York, NY, USA, 2005.
  26. H. Ku and P. Wong, “Contrast on tensile and flexural properties of glass powder reinforced epoxy composites: pilot study,” Journal of Applied Polymer Science, vol. 123, no. 1, pp. 152–161, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Lin, C. Gao, and N. Li, “Influence of CaCO3 whisker content on mechanical and tribological properties of polyetheretherketone composites,” Journal of Materials Science and Technology, vol. 22, no. 5, pp. 584–588, 2006. View at Google Scholar · View at Scopus
  28. R. N. Rothon, Particulate Filled Polymer Composites, Rapra Technology, London, UK, 2nd edition, 2003.
  29. D. Ratna, “Epoxy composites: impact resistance and flame retardancy, volume 16, number 5,” Rapra Review Reports 185, Smithers Rapra Technology, London, UK, 2005. View at Google Scholar
  30. E. S. Greenhalgh, Failure Analysis and Fractography of Polymer Composites, Woodhead Publishing Limited (CRC Press), Cambridge, UK, 2009.
  31. S. Y. Fu, X. Q. Feng, B. Lauke, and Y. W. Mai, “Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites,” Composites B: Engineering, vol. 39, no. 6, pp. 933–961, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Feng, X. Diao, Y. Shi, H. Wang, S. Sun, and X. Lu, “A study on the friction and wear behavior of polytetrafluoroethylene filled with potassium titanate whiskers,” Wear, vol. 261, no. 11-12, pp. 1208–1212, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Liang, H. U. Xiaolan, and L. U. Tingli, “Inorganic whiskers reinforced bismaleimide composites: part II the tribological behavior of BMI/potassium titanate composites,” Journal of Materials Science, vol. 40, no. 7, pp. 1743–1748, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. W. Österle, I. Dörfel, C. Prietzel et al., “A comprehensive microscopic study of third body formation at the interface between a brake pad and brake disc during the final stage of a pin-on-disc test,” Wear, vol. 267, no. 5–8, pp. 781–788, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Bahadur, “The development of transfer layers and their role in polymer tribology,” Wear, vol. 245, no. 1-2, pp. 92–99, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Straffelini, M. Pellizzari, and A. Molinari, “Influence of load and temperature on the dry sliding behaviour of Al-based metal-matrix-composites against friction material,” Wear, vol. 256, no. 7-8, pp. 754–763, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Ozturk, F. Arslan, and S. Ozturk, “Hot wear properties of ceramic and basalt fiber reinforced hybrid friction materials,” Tribology International, vol. 40, no. 1, pp. 37–48, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Unal, U. Sen, and A. Mimaroglu, “An approach to friction and wear properties of polytetrafluoroethylene composite,” Materials and Design, vol. 27, no. 8, pp. 694–699, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Bassani, G. Levita, M. Meozzi, and G. Palla, “Friction and wear of epoxy resin on inox steel: remarks on the influence of velocity, load and induced thermal state,” Wear, vol. 247, no. 2, pp. 125–132, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Chang and K. Friedrich, “Enhancement effect of nanoparticles on the sliding wear of short fiber-reinforced polymer composites: a critical discussion of wear mechanisms,” Tribology International, vol. 43, no. 12, pp. 2355–2364, 2010. View at Publisher · View at Google Scholar · View at Scopus