Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2015 (2015), Article ID 854192, 9 pages
http://dx.doi.org/10.1155/2015/854192
Research Article

New Plaster Composite with Mineral Wool Fibres from CDW Recycling

1School of Building Engineering, Technical University of Madrid, 28040 Madrid, Spain
2School of Forestry Engineering and Natural Resources, Technical University of Madrid, 28040 Madrid, Spain

Received 23 April 2015; Accepted 25 May 2015

Academic Editor: Robert Cerný

Copyright © 2015 Sonia Romaniega Piñeiro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Villoria Sáez, M. Del Río Merino, and C. Porras-Amores, “Estimation of construction and demolition waste volume generation in new residential buildings in Spain,” Waste Management & Research, vol. 30, no. 2, pp. 137–146, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. Papadopoulos, “State of the art in thermal insulation materials and aims for future developments,” Energy and Builidings, vol. 37, pp. 77–86, 2005. View at Publisher · View at Google Scholar
  3. O. Väntsi and T. Kärki, “Mineral wool waste in Europe: a review of mineral wool waste quantity, quality, and current recycling methods,” Journal of Material Cycles and Waste Management, vol. 16, no. 1, pp. 62–72, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. Ministerio de Medio Ambiente y Medio Rural y Marino, 2008.
  5. Real Decreto 105/2008, de 1 de febrero, por el que se regula la producción y gestión de los residuos de construcción y demolición, 2008.
  6. Afelma, Asociación de fabricantes españoles de lanas minerales aislantes (s.f.), 2015, http://www.aislar.com/.
  7. I. de Oteiza San José, “Study of the behaviour of sisal fiber reinforced hemihydrated gypsum as components in low cost housing,” in Informes de la construcción, pp. 425–426, 1993. View at Google Scholar
  8. M. A. Ali and F. J. Grimer, “Mechanical properties of glass fibre-reinforced gypsum,” Journal of Materials Science, vol. 4, no. 5, pp. 389–395, 1969. View at Publisher · View at Google Scholar · View at Scopus
  9. M. del Río Merino and P. Comino Almenara, “Análisis de los refuerzos mixtos de fibras de vidrio E y fibras AR en la escayola, como alternativa a los refuerzos monofibras (homogéneos),” Materiales de Construcción, vol. 52, no. 268, pp. 33–42, 2002. View at Google Scholar
  10. A. G. Santos, “PPF-reenfocad, EPS-lightened gypsum plaster,” Materiales de Construcción, vol. 59, no. 293, pp. 105–124, 2009. View at Google Scholar
  11. A. G. Santos, Modelo teórico del comportamiento mecánico del yeso y sus compuestos fibrosos poliméricos [Ph.D. thesis], 1988.
  12. Y.-H. Deng and T. Furuno, “Properties of gypsum particleboard reinforced with polypropylene fibers,” Journal of Wood Science, vol. 47, no. 6, pp. 445–450, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. PLACO, “Placo Saint-Gobain,” 2015, http://www.placo.es.
  14. URSA, Technical sheet Panel Mur P1281.
  15. URSA, (s.f.), Technical sheet Ursa Terra—R.
  16. F. Hernández-Olivares, I. Oteiza, and L. de Villanueva, “Experimental analysis of toughness and modulus of rupture increase of sisal short fiber reinforced hemihydrated gypsum,” Composite Structures, vol. 22, no. 3, pp. 123–137, 1992. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Klöck and S. Aicher, “Size effect in paper fiber-reinforced gypsum panels under in-plane bending,” Wood and Fiber Science, vol. 37, no. 3, pp. 403–412, 2005. View at Google Scholar · View at Scopus
  18. T. Rahman, W. Lutz, R. Finn, S. Schmauder, and S. Aicher, “Simulation of the mechanical behavior and damage in components made of strain softening cellulose fiber reinforced gypsum materials,” Computational Materials Science, vol. 39, no. 1, pp. 65–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Gao and G. Li, “Effect of straw fiber modification on performance of gypsum composite,” Advanced Materials Research, vol. 168–170, pp. 1455–1458, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Vardy and C. MacDougall, “Concentric and eccentric compression experiments of plastered straw bale assemblies,” Journal of Structural Engineering, vol. 139, no. 3, pp. 448–461, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. Y.-F. Wu and M. P. Dare, “Flexural and shear strength of composite lintels in glass-fiber-reinforced gypsum wall constructions,” Journal of Materials in Civil Engineering, vol. 18, no. 3, pp. 415–423, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. J. C. Aguilar, D. N. Mendoza, R. H. Fuertes, B. B. González, A. T. Gilmore, and R. P. Ramírez, “Caracterización del hormigón elaborado con áridos reciclados producto de la demolición de estructuras de hormigón,” Materiales de Construcción, vol. 57, no. 288, pp. 5–15, 2007. View at Google Scholar
  23. K. Yoda and A. Shintani, “Building application of recycled aggregate concrete for upper-ground structural elements,” Construction and Building Materials, vol. 67, pp. 379–385, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Abbas, G. Fathifazl, B. Fournier et al., “Quantification of the residual mortar content in recycled concrete aggregates by image analysis,” Materials Characterization, vol. 60, no. 7, pp. 716–728, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. K.-L. Lin and C.-Y. Lin, “Hydration characteristics of waste sludge ash utilized as raw cement material,” Cement and Concrete Research, vol. 35, no. 10, pp. 1999–2007, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. F. J. Madariaga and J. L. Macia, “Mezclas de residuos de poliestireno expandido (EPS) conglomerados con yeso o escayola para su uso en la construcción,” Informes de la Construcción, vol. 60, no. 509, pp. 35–43, 2008. View at Google Scholar
  27. R. Demirboga and A. Kan, “Thermal conductivity and shrinkage properties of modified waste polystyrene aggregate concretes,” Construction and Building Materials, vol. 35, pp. 730–734, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Sabador, M. Frías, M. I. Rojas, R. Vigil, R. García, and J. T. José, “Caracterización y transformación de un residuo industrial (lodo de papel estucado) en un material con propiedades puzolánicas,” Materiales de Construcción, vol. 57, no. 285, pp. 45–59, 2007. View at Google Scholar
  29. M. del Río Merino, “Yeso aligerado con corcho y su aplicación en paneles para construcción,” Patente no. ES2170612A1, OEPM, Madrid, Spain, 2002.
  30. AENOR, “Yesos de construcción y conglomerantes a base de yeso para la construcción. Parte 1: definiciones y especificaciones,” UNE-EN 13279-1, AENOR, Madrid, Spain, 2009. View at Google Scholar
  31. Rockwool firesafe insulation, http://www.rockwool.es.
  32. ISOVER—Saint Gobain, http://www.isover.es.
  33. AENOR, “Productos aislantes térmicos para aplicaciones en la edificación. Productos manufacturados de lana mineral (MW). Especificación,” Tech. Rep. UNE-EN 13162, AENOR, Madrid, Spain, 2009. View at Google Scholar
  34. AENOR, “Yesos de construcción y conglomerantes a base de yeso para la construcción. Parte 2: métodos de ensayo,” UNE-EN 13279-2, AENOR, Madrid, Spain, 2014. View at Google Scholar
  35. AENOR, “Yesos y escayolas de construcción. Determinación de la Dureza Shore C, y de la dureza Brinell,” Tech. Rep. UNE-EN 102-039-85, AENOR, Madrid, Spain, 1985. View at Google Scholar