Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2016, Article ID 1016482, 9 pages
http://dx.doi.org/10.1155/2016/1016482
Research Article

Crack-Depth Prediction in Steel Based on Cooling Rate

1Department of Cartographic and Terrain Engineering, University of Salamanca, Polytechnic School of Avila, Hornos Caleros 50, 05003 Ávila, Spain
2Faculty of Sciences and Arts, Catholic University of Avila (UCAV), C/Canteros s/n, 05005 Ávila, Spain
3Applied Geotechnologies Research Group, University of Vigo, Campus Lagoas-Marcosende, Rúa Maxwell s/n, 36310 Vigo, Spain

Received 14 September 2015; Accepted 13 January 2016

Academic Editor: Gianluca Percoco

Copyright © 2016 M. Rodríguez-Martín et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. ISO, “Welding. Fusion-welded joints in steel, nickel, titanium and their alloys (beam welding excluded). Quality levels for imperfection,” ISO 5817:2009, European Committee for Standardization, 2009. View at Google Scholar
  2. T. W. Liao, “Classification of weld flaws with imbalanced class data,” Expert Systems with Applications, vol. 35, no. 3, pp. 1041–1052, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. IAB, “Minimum Requirements for the Education, Examination and Qualification,” Tech. Rep. 252r2-14/SV-00, IAB—International Authorization Board, 2014. View at Google Scholar
  4. BS, “Guide to methods for assessing the acceptability of flaws in metallic structures,” Tech. Rep. BT7910:2013, The British Standards Institution, 2013. View at Google Scholar
  5. M. V. Felice, A. Velichko, and P. D. Wilcox, “Accurate depth measurement of small surface-breaking cracks using an ultrasonic array post-processing technique,” NDT & E International, vol. 68, pp. 105–112, 2014. View at Publisher · View at Google Scholar
  6. H.-S. Huang, “Fracture characteristics analysis of pressured pipeline with crack using boundary element method,” Advances in Materials Science and Engineering, vol. 2015, Article ID 508630, 13 pages, 2015. View at Publisher · View at Google Scholar
  7. E. Maire, J.-Y. Buffière, L. Salvo, J. J. Blandin, W. Ludwig, and J. M. Létang, “On the application of X-ray microtomography in the field of materials science,” Advanced Engineering Materials, vol. 3, no. 8, pp. 539–546, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Henkel, D. Holländer, M. Wünsche et al., “Crack observation methods, their application and simulation of curved fatigue crack growth,” Engineering Fracture Mechanics, vol. 77, no. 11, pp. 2077–2090, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Zhang, W. Ke, Q. Ye, and J. Jiao, “A novel laser vision sensor for weld line detection on wall-climbing robot,” Optics and Laser Technology, vol. 60, pp. 69–79, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Dinham and G. Fang, “Autonomous weld seam identification and localisation using eye-in-hand stereo vision for robotic arc welding,” Robotics and Computer-Integrated Manufacturing, vol. 29, no. 5, pp. 288–301, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Rodríguez-Martín, S. Lagüela, D. González-Aguilera, and P. Rodríguez-Gonzálvez, “Procedure for quality inspection of welds based on macro-photogrammetric three-dimensional reconstruction,” Optics & Laser Technology, vol. 73, pp. 54–62, 2015. View at Publisher · View at Google Scholar
  12. M. Rodríguez-Martín, S. Lagüela, D. González-Aguilera, and J. Martinez, “Prediction of depth model for cracks in steel using infrared thermography,” Infrared Physics & Technology, vol. 71, pp. 492–500, 2015. View at Google Scholar
  13. R. Frappier, A. Benoit, P. Paillard, T. Baudin, R. Le Gall, and T. Dupuy, “Quantitative infrared analysis of welding processes: temperature measurement during RSW and CMT-MIG welding,” Science and Technology of Welding and Joining, vol. 19, no. 1, pp. 38–43, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Nagaraju, A. Rajadurai, M. Vasudevan, M. Menaka, and R. Subbaratnam, “Novel method for quantitative assessment of slag detachability in austenitic stainless steels welds made by SMAW,” Science and Technology of Welding and Joining, vol. 13, no. 8, pp. 739–743, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Maldague, F. Galmiche, and A. Ziadi, “Advances in pulsed phase thermography,” Infrared Physics & Technology, vol. 43, no. 3–5, pp. 175–181, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Busse, A. Gleiter, and C. Spiessberger, “NDE using lockin-thermography: principle and recent developments,” in Nondestructive Testing of Materials and Structures, vol. 6 of RILEM Bookseries, pp. 627–632, Springer, Dordrecht, The Netherlands, 2013. View at Publisher · View at Google Scholar
  17. A. Castelo, A. Mendioroz, R. Celorrio, and A. Salazar, “Vertical cracks characterization and resolution from lock-in vibrothermography,” in Proceedings of the 12 International Conference on Quantitative Infrared Thermography, Bordeaux, France, July 2014.
  18. A. Mendioroz, A. Castelo, R. Celorrio, and A. Salazar, “Characterization and spatial resolution of cracks using lock-in vibrothermography,” NDT & E International, vol. 66, pp. 8–15, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Palumbo, F. Ancona, and U. Galietti, “Quantitative damage evaluation of composite materials with microwave thermographic technique: feasibility and new data analysis,” Meccanica, vol. 50, no. 2, pp. 443–459, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Rodríguez-Martín, S. Lagüela, D. González-Aguilera, and P. Arias, “Cooling analysis of welded materials for crack detection using infrared thermography,” Infrared Physics and Technology, vol. 67, pp. 547–554, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. ISO, “Welding and allied processes—classification of geometric imperfections in metallic materials—part 1: fusion welding,” EN-ISO 6520-1:2009, European Committee for Standardization, 2009. View at Google Scholar
  22. S. Lagüela, H. González-Jorge, J. Armesto, and J. Herráez, “High performance grid for the metric calibration of thermographic cameras,” Measurement Science and Technology, vol. 23, no. 1, Article ID 015402, 2012. View at Publisher · View at Google Scholar · View at Scopus