Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2016, Article ID 2658621, 7 pages
http://dx.doi.org/10.1155/2016/2658621
Research Article

Preparation of Magnetic Hybrid Microspheres with Well-Defined Yolk-Shell Structure

1Hubei Collaboration Innovative Center for Nonpower Nuclear Technology, Hubei University of Science and Technology, Xianning 437100, China
2School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China

Received 15 June 2016; Revised 6 September 2016; Accepted 8 September 2016

Academic Editor: Peter Majewski

Copyright © 2016 Yuan Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Lan, Y. Wu, H. Hu, L. Xie, and Z. Gu, “Superparamagnetic Fe3O4/PMMA composite nanospheres as a nanoplatform for multimodal protein separation,” RSC Advances, vol. 3, no. 5, pp. 1557–1563, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Velez, I. Torres-Díaz, L. Maldonado-Camargo, C. Rinaldi, and D. P. Arnold, “Magnetic assembly and cross-linking of nanoparticles for releasable magnetic microstructures,” ACS Nano, vol. 9, no. 10, pp. 10165–10172, 2015. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Yakar, G. Tansık, T. Keskin, and U. Gündüz, “Tailoring the magnetic behavior of polymeric particles for bioapplications,” Journal of Polymer Engineering, vol. 33, no. 3, pp. 265–274, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Cervadoro, M. Cho, J. Key et al., “Synthesis of multifunctional magnetic nanoflakes for magnetic resonance imaging, hyperthermia, and targeting,” ACS Applied Materials & Interfaces, vol. 6, no. 15, pp. 12939–12946, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. B. J. Park, F. F. Fang, and H. J. Choi, “Magnetorheology: materials and application,” Soft Matter, vol. 6, no. 21, pp. 5246–5253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. K. R. Hurley, H. L. Ring, H. Kang, N. D. Klein, and C. L. Haynes, “Characterization of magnetic nanoparticles in biological matrices,” Analytical Chemistry, vol. 87, no. 23, pp. 11611–11619, 2015. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Wan and J. Li, “Facile synthesis of well-dispersed superparamagnetic γ-Fe2O3 nanoparticles encapsulated in three-dimensional architectures of cellulose aerogels and their applications for Cr(VI) removal from contaminated water,” ACS Sustainable Chemistry & Engineering, vol. 3, no. 9, pp. 2142–2152, 2015. View at Publisher · View at Google Scholar · View at Scopus
  8. S. K. Suh, K. Yuet, D. K. Hwang, K. W. Bong, P. S. Doyle, and T. A. Hatton, “Synthesis of nonspherical superparamagnetic particles: in situ coprecipitation of magnetic nanoparticles in microgels prepared by stop-flow lithography,” Journal of the American Chemical Society, vol. 134, no. 17, pp. 7337–7343, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. L.-K. Shen, K.-H. Fan, T.-L. Wu et al., “Fabrication and magnetic testing of a poly-L-lactide biocomposite incorporating magnetite nanoparticles,” Journal of Polymer Engineering, vol. 34, no. 3, pp. 231–235, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Liu, R. Che, H. Chen et al., “Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells,” Small, vol. 8, no. 8, pp. 1214–1221, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Chuayjuljit, N. Sukasem, and A. Boonmahitthisud, “Effects of silica, poly(methyl methacrylate) and poly(methyl methacrylate)-grafted-silica nanoparticles on the physical properties of plasticized-poly(vinyl chloride),” Polymer-Plastics Technology and Engineering, vol. 53, no. 2, pp. 116–122, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. A. R. Mahdavian, Y. Sehri, and H. Salehi-Mobarakeh, “Nanocomposite particles with core-shell morphology II. An investigation into the affecting parameters on preparation of Fe3O4-poly (butyl acrylate-styrene) particles via miniemulsion polymerization,” European Polymer Journal, vol. 44, no. 8, pp. 2482–2488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Kumari, S. K. Yadav, and S. C. Yadav, “Biodegradable polymeric nanoparticles based drug delivery systems,” Colloids and Surfaces B: Biointerfaces, vol. 75, no. 1, pp. 1–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Ahmad, K. Kumar, M. A. Rahman et al., “Preparation and characterization of conducting polyaniline layered magnetic nano composite polymer particles,” Polymers for Advanced Technologies, vol. 24, no. 8, pp. 740–746, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Shi, Z. Zhang, R. Fan et al., “Synthesis and characterization of iron particles hosted in Porous Alumina,” Journal of Inorganic and Organometallic Polymers and Materials, vol. 21, no. 4, pp. 836–840, 2011. View at Publisher · View at Google Scholar
  16. N.-N. Song, H.-T. Yang, H.-L. Liu et al., “Exceeding natural resonance frequency limit of monodisperse Fe3O4 nanoparticles via superparamagnetic relaxation,” Scientific Reports, vol. 3, article 3161, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Gunay, H. Kavas, and A. Baykal, “Simple polyol route to synthesize heptanoic acid coated magnetite (Fe3O4) nanoparticles,” Materials Research Bulletin, vol. 48, no. 3, pp. 1296–1303, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Zhang, W. Wu, K. Guo, J.-F. Chen, and P.-Y. Zhang, “Magnetic polymer enhanced hybrid capsules prepared from a novel Pickering emulsion polymerization and their application in controlled drug release,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 349, no. 1–3, pp. 110–116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Alamri, N. Ballot, J. Long et al., “Integrative synthesis of coordination polymers, metal oxides, and alloys magnetic nanoparticles in MSU mesoporous silica,” Chemistry of Materials, vol. 26, no. 2, pp. 875–885, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Eid and A. Mansour, “Preparation and magnetic investigation of magnetic nanoparticles entrapped hydrogels and its possible use as radiation shield,” Journal of Inorganic and Organometallic Polymers and Materials, vol. 23, no. 6, pp. 1255–1265, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Faraji, Y. Yamini, and M. Rezaee, “Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications,” Journal of the Iranian Chemical Society, vol. 7, no. 1, pp. 1–37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Seckin, S. Vural, and S. Köytepe, “Preparation and structural properties of Fe3O4–polyimide hybrid nanocomposites,” Polymer Bulletin, vol. 64, no. 2, pp. 115–126, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. B. Rajput, S. J. Rahaman, G. Sarkhel, M. K. Patra, S. R. Vadera, and N. N. Ghosh, “Preparation, characterization and properties of flexible magnetic nanocomposites of NiFe2O4-polybenzoxazine-LLDPE,” Polymer—Plastics Technology and Engineering, vol. 52, no. 11, pp. 1097–1105, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Hu, M. Chen, and L. Wu, “Organic-inorganic nanocomposites synthesized via miniemulsion polymerization,” Polymer Chemistry, vol. 2, no. 4, pp. 760–772, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Ashjari, A. R. Mahdavian, N. G. Ebrahimi, and Y. Mosleh, “Efficient dispersion of magnetite nanoparticles in the polyurethane matrix through solution mixing and investigation of the nanocomposite properties,” Journal of Inorganic and Organometallic Polymers and Materials, vol. 20, no. 2, pp. 213–219, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Xuan, F. Wang, J. M. Y. Lai et al., “Synthesis of biocompatible, mesoporous Fe3O4 nano/microspheres with large surface area for magnetic resonance imaging and therapeutic applications,” ACS Applied Materials & Interfaces, vol. 3, no. 2, pp. 237–244, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. Q. Yang, Y. Wu, F. Lan et al., “Hollow superparamagnetic PLGA/Fe3O4 composite microspheres for lysozyme adsorption,” Nanotechnology, vol. 25, no. 8, Article ID 085702, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Y. Hong, B. Feng, X. Cai et al., “Double-miniemulsion preparation of Fe3O4/poly(methyl methacrylate) magnetic latex,” Journal of Applied Polymer Science, vol. 112, no. 1, pp. 89–98, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Xiao, J. J. Zhang, Z. Q. Wang, and H. Lin, “Photon conversion and radiation synergism in Eu/Tb complexes incorporated poly methyl methacrylate,” Advances in Materials Science and Engineering, vol. 2016, Article ID 2618253, 11 pages, 2016. View at Publisher · View at Google Scholar
  30. J. A. Medford, J. W. Hubbard, F. Orange, M. J.-F. Guinel, B. O. Calcagno, and C. Rinaldi, “Magnetothermal repair of a PMMA/iron oxide magnetic nanocomposite,” Colloid and Polymer Science, vol. 292, no. 6, pp. 1429–1437, 2014. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Li, T. Wang, L. Zhang, Z. Su, C. Wang, and R. Wang, “Selected-control synthesis of monodisperse Fe3O4@C core-shell spheres, chains, and rings as high-performance anode materials for lithium-ion batteries,” Chemistry—A European Journal, vol. 18, no. 36, pp. 11417–11422, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Du, W. Liu, R. Qiang et al., “Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites,” ACS Applied Materials and Interfaces, vol. 6, no. 15, pp. 12997–13006, 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Li, Y. Feng, Y. Li, W. Zhao, and J. Shi, “Fe3O4 core/layered double hydroxide shell nanocomposite: versatile magnetic matrix for anionic functional materials,” Angewandte Chemie—International Edition, vol. 48, no. 32, pp. 5888–5892, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. C. C. Zhang, X. Li, Y. Yang, and C. Wang, “Polymethylmethacrylate/Fe3O4 composite nanofiber membranes with ultra-low dielectric permittivity,” Applied Physics A: Materials Science & Processing, vol. 97, no. 2, pp. 281–285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Shen, K. Chen, L. Li, W. Wang, and Y. Jin, “Fabrication and microwave absorbing properties of (Z-type barium ferrite/silica)@polypyrrole composites,” Journal of Alloys and Compounds, vol. 615, pp. 488–495, 2014. View at Publisher · View at Google Scholar · View at Scopus
  36. W. Cheng, K. Tang, Y. Qi, J. Sheng, and Z. Liu, “One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core-shell spheres,” Journal of Materials Chemistry, vol. 20, no. 9, pp. 1799–1805, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. B. J. Park, M. K. Hong, and H. J. Choi, “Atom transfer radical polymerized PMMA/magnetite nanocomposites and their magnetorheology,” Colloid and Polymer Science, vol. 287, no. 4, pp. 501–504, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Kavas, M. Günay, A. Baykal, M. S. Toprak, H. Sozeri, and B. Aktaş, “Negative permittivity of polyaniline-Fe3O4 nanocomposite,” Journal of Inorganic and Organometallic Polymers and Materials, vol. 23, no. 2, pp. 306–314, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Chen, Q. Zhou, Q. Xiong, W. Li, J. Liu, and X. Yang, “Shape-evolution and growth mechanism of Fe3O4 polyhedrons,” Advances in Materials Science and Engineering, vol. 2015, Article ID 763124, 7 pages, 2015. View at Publisher · View at Google Scholar
  40. M. Shao, F. Ning, J. Zhao, M. Wei, D. G. Evans, and X. Duan, “Preparation of Fe3O4@ SiO2@ layered double hydroxide core-shell microspheres for magnetic separation of proteins,” Journal of the American Chemical Society, vol. 134, no. 2, pp. 1071–1077, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Zhang, J. Y. Lim, and H. J. Choi, “Amino functionalization and characteristics of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite,” Diamond and Related Materials, vol. 18, no. 2-3, pp. 316–318, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Tan, Z. Zhuang, Q. Peng, and Y. Li, “Room-temperature soft magnetic iron oxide nanocrystals: synthesis, characterization, and size-dependent magnetic properties,” Chemistry of Materials, vol. 20, no. 15, pp. 5029–5034, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. F. F. Fang, J. H. Kim, and H. J. Choi, “Synthesis of core–shell structured PS/Fe3O4 microbeads and their magnetorheology,” Polymer, vol. 50, no. 10, pp. 2290–2293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Kanagesan, M. Hashim, S. Tamilselvan et al., “Synthesis, characterization, and cytotoxicity of iron oxide nanoparticles,” Advances in Materials Science and Engineering, vol. 2013, Article ID 710432, 7 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus