Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2016 (2016), Article ID 4102196, 6 pages
http://dx.doi.org/10.1155/2016/4102196
Research Article

Green Synthesis of Silver Nanoparticles Using Apple Extract and Its Antibacterial Properties

1Corrosion and Coating Laboratory, Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
3Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

Received 10 September 2015; Accepted 29 December 2015

Academic Editor: Simon C. Potter

Copyright © 2016 Zainal Abidin Ali et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Sivanesan, H. K. Ly, J. Kozuch et al., “Functionalized Ag nanoparticles with tunable optical properties for selective protein analysis,” Chemical Communications, vol. 47, no. 12, pp. 3553–3555, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Liu, S. Qu, X. Zhang, F. Tan, and Z. Wang, “Improved photovoltaic performance of silicon nanowire/organic hybrid solar cells by incorporating silver nanoparticles,” Nanoscale Research Letters, vol. 8, no. 1, pp. 1–6, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Zhu, M. Du, M. Zhang et al., “Facile fabrication of AgNPs/(PVA/PEI) nanofibers: high electrochemical efficiency and durability for biosensors,” Biosensors and Bioelectronics, vol. 49, pp. 210–215, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Zhang, C. Shao, Z. Zhang et al., “In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol,” Nanoscale, vol. 3, no. 8, pp. 3357–3363, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. W. A. Ismail, Z. A. Ali, and R. Puteh, “Transparent nanocrystallite silver for antibacterial coating,” Journal of Nanomaterials, vol. 2013, Article ID 901452, 6 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Rai, A. Yadav, and A. Gade, “Silver nanoparticles as a new generation of antimicrobials,” Biotechnology Advances, vol. 27, no. 1, pp. 76–83, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. K. K. Caswell, C. M. Bender, and C. J. Murphy, “Seedless, surfactantless wet chemical synthesis of silver nanowires,” Nano Letters, vol. 3, no. 5, pp. 667–669, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Yin, Z.-Y. Li, Z. Zhong, B. Gates, Y. Xia, and S. Venkateswaran, “Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process,” Journal of Materials Chemistry, vol. 12, no. 3, pp. 522–527, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. P. K. Khanna, N. Singh, S. Charan, V. V. V. S. Subbarao, R. Gokhale, and U. P. Mulik, “Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method,” Materials Chemistry and Physics, vol. 93, no. 1, pp. 117–121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Maretti, P. S. Billone, Y. Liu, and J. C. Scaiano, “Facile photochemical synthesis and characterization of highly fluorescent silver nanoparticles,” Journal of the American Chemical Society, vol. 131, no. 39, pp. 13972–13980, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Wiley, T. Herricks, Y. Sun, and Y. Xia, “Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons,” Nano Letters, vol. 4, no. 9, pp. 1733–1739, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” Journal of the American Chemical Society, vol. 123, no. 7, pp. 1471–1482, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. M. J. Uddin, B. Chaudhuri, K. Pramanik, T. R. Middya, and B. Chaudhuri, “Black tea leaf extract derived Ag nanoparticle-PVA composite film: structural and dielectric properties,” Materials Science and Engineering B, vol. 177, no. 20, pp. 1741–1747, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Philip, “Mangifera Indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 78, no. 1, pp. 327–331, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Mendoza-Reséndez, N. O. Núñez, E. D. Barriga-Castro, and C. Luna, “Synthesis of metallic silver nanoparticles and silver organometallic nanodisks mediated by extracts of Capsicum annuumvar. aviculare (piquin) fruits,” RSC Advances, vol. 3, no. 43, pp. 20765–20771, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Basavegowda, A. Idhayadhulla, and Y. R. Lee, “Tyrosinase inhibitory activity of silver nanoparticles treated with Hovenia dulcis fruit extract: an in vitro study,” Materials Letters, vol. 129, pp. 28–30, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. S. L. Krein, C. P. Kowalski, T. P. Hofer, and S. Saint, “Preventing hospital-acquired infections: a national survey of practices reported by U.S. hospitals in 2005 and 2009,” Journal of General Internal Medicine, vol. 27, no. 7, pp. 773–779, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Inweregbu, J. Dave, and A. Pittard, “Nosocomial infections,” Continuing Education in Anaesthesia, Critical Care & Pain, vol. 5, no. 1, pp. 14–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Ren, D. Hu, E. W. C. Cheng, M. A. Vargas-Reus, P. Reip, and R. P. Allaker, “Characterisation of copper oxide nanoparticles for antimicrobial applications,” International Journal of Antimicrobial Agents, vol. 33, no. 6, pp. 587–590, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Ahamed, H. A. Alhadlaq, M. A. M. Khan, P. Karuppiah, and N. A. Al-Dhabi, “Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles,” Journal of Nanomaterials, vol. 2014, Article ID 637858, 4 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Paulkumar, G. Gnanajobitha, M. Vanaja et al., “Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens,” The Scientific World Journal, vol. 2014, Article ID 829894, 9 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. O. S. Oluwafemi, Y. Lucwaba, A. Gura et al., “A facile completely ‘green’ size tunable synthesis of maltose-reduced silver nanoparticles without the use of any accelerator,” Colloids and Surfaces B: Biointerfaces, vol. 102, pp. 718–723, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. V. K. Vidhu, S. A. Aromal, and D. Philip, “Green synthesis of silver nanoparticles using Macrotyloma uniflorum,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 83, no. 1, pp. 392–397, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Karuppiah and R. Rajmohan, “Green synthesis of silver nanoparticles using Ixora coccinea leaves extract,” Materials Letters, vol. 97, pp. 141–143, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. T. M. Riddick, “Control of colloid stability through zeta potential,” in Blood, vol. 10, p. 1, 1968. View at Google Scholar
  26. D. Philip, “Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis,” Physica E: Low-Dimensional Systems and Nanostructures, vol. 42, no. 5, pp. 1417–1424, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Dong, K. Zhou, X. Zhang et al., “Semen cassiae extract mediated novel route for the preparation of silver nanoparticles,” Materials Letters, vol. 120, pp. 118–121, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Shameli, M. B. Ahmad, E. A. Jaffar Al-Mulla et al., “Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction,” Molecules, vol. 17, no. 7, pp. 8506–8517, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Shameli, M. B. Ahmad, S. D. Jazayeri et al., “Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method,” International Journal of Molecular Sciences, vol. 13, no. 6, pp. 6639–6650, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Zargar, A. A. Hamid, F. A. Bakar et al., “Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L.,” Molecules, vol. 16, no. 8, pp. 6667–6676, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. A. T. M. Saeb, A. S. Alshammari, H. Al-Brahim, and K. A. Al-Rubeaan, “Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug resistant bacteria,” The Scientific World Journal, vol. 2014, Article ID 704708, 9 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Velmurugan, S. Lee, M. Iydroose, K. Lee, and B. Oh, “Pine cone-mediated green synthesis of silver nanoparticles and their antibacterial activity against agricultural pathogens,” Applied Microbiology and Biotechnology, vol. 97, no. 1, pp. 361–368, 2013. View at Publisher · View at Google Scholar
  33. A. Saxena, R. M. Tripathi, F. Zafar, and P. Singh, “Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity,” Materials Letters, vol. 67, no. 1, pp. 91–94, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Philip, C. Unni, S. A. Aromal, and V. K. Vidhu, “Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles,” Spectrochimica Acta—Part A: Molecular and Biomolecular Spectroscopy, vol. 78, no. 2, pp. 899–904, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Li, J. Zhu, and X. Liu, “Ultrafine silver nanoparticles obtained from ethylene glycol at room temperature: catalyzed by tungstate ions,” Dalton Transactions, vol. 43, no. 1, pp. 132–137, 2014. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Sathishkumar, K. Sneha, S. W. Won, C.-W. Cho, S. Kim, and Y.-S. Yun, “Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity,” Colloids and Surfaces B: Biointerfaces, vol. 73, no. 2, pp. 332–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Kumar and H. Münstedt, “Silver ion release from antimicrobial polyamide/silver composites,” Biomaterials, vol. 26, no. 14, pp. 2081–2088, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. G. McDonnell and A. D. Russell, “Antiseptics and disinfectants: activity, action, and resistance,” Clinical Microbiology Reviews, vol. 12, no. 1, pp. 147–179, 1999. View at Google Scholar
  39. S. Pal, Y. K. Tak, and J. M. Song, “Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli,” Applied and Environmental Microbiology, vol. 73, no. 6, pp. 1712–1720, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. I. Sondi and B. Salopek-Sondi, “Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria,” Journal of Colloid and Interface Science, vol. 275, no. 1, pp. 177–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Carlson, S. M. Hussein, A. M. Schrand et al., “Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species,” The Journal of Physical Chemistry B, vol. 112, no. 43, pp. 13608–13619, 2008. View at Publisher · View at Google Scholar · View at Scopus