Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2016, Article ID 7451941, 5 pages
http://dx.doi.org/10.1155/2016/7451941
Research Article

Magnetodielectric and Metalomagnetic 1D Photonic Crystals Homogenization: Local Behavior

1Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Boulevard Valsequillo Esquina, Avenida San Claudio s/n, Colonia San Manuel, Apartado Postal J-39, 72570 Puebla, PUE, Mexico
2División de Estudios de Posgrado e Investigación, Maestría en Ciencias en Ingeniería Mecánica, Instituto Tecnológico de Puebla, Avenida Tecnológico 420, Maravillas, 72220 Puebla, PUE, Mexico

Received 23 February 2016; Accepted 12 April 2016

Academic Editor: Francesco dell’Isola

Copyright © 2016 J. I. Rodríguez Mora et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. De Felice and N. Rizzi, “Homogenization for materials with microstructure,” Pressure Vessels and Piping Division of the American Society of Mechanical Engineers, vol. 369, pp. 33–38, 1997. View at Google Scholar
  2. A. Cecchi and N. L. Rizzi, “Heterogeneous elastic solids: a mixed homogenization-rigidification technique,” International Journal of Solids and Structures, vol. 38, no. 1, pp. 29–36, 2000. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  3. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, USA, 2008.
  4. P. Halevi and F. Pérez-Rodríguez, “From photonic crystals (via homogenization) to metamaterials,” in Proceedings of the Complex Photonic Media, vol. 6320 of Proceedings of SPIE, San Diego, Calif, USA, August 2006. View at Publisher · View at Google Scholar
  5. E. Reyes-Ayona and P. Halevi, “Mean field theory of metallo-dielectric photonic crystals with magnetic components: the long-wavelength limit,” in Photonic Metamaterials, 66380G, vol. 6638 of Proceedings of SPIE, September 2007. View at Publisher · View at Google Scholar
  6. V. Cerdán-Ramírez, B. Zenteno-Mateo, M. P. Sampedro, M. A. Palomino-Ovando, B. Flores-Desirena, and F. Pérez-Rodríguez, “Anisotropy effects in homogenized magnetodielectric photonic crystals,” Journal of Applied Physics, vol. 106, Article ID 103520, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. A. Reyes-Avendaño, U. Algredo-Badillo, P. Halevi, and F. Pérez-Rodríguez, “From photonic crystals to metamaterials: the bianisotropic response,” New Journal of Physics, vol. 13, Article ID 073041, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. A. A. Krokhin and E. Reyes, “Homogenization of magnetodielectric photonic crystals,” Physical Review Letters, vol. 93, no. 2, Article ID 023904, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Reyes, A. A. Krokhin, and J. Roberts, “Effective dielectric constants of photonic crystal of aligned anisotropic cylinders and the optical response of a periodic array of carbon nanotubes,” Physical Review B, vol. 72, no. 15, Article ID 155118, 2005. View at Publisher · View at Google Scholar
  10. A. A. Krokhin, E. Reyes, and L. Gumen, “Low-frequency index of refraction for a two-dimensional metallodielectric photonic crystal,” Physical Review B, vol. 75, no. 4, Article ID 045131, 2007. View at Publisher · View at Google Scholar
  11. G. P. Ortiz, B. E. Martínez-Zérega, B. S. Mendoza, and W. L. Mochán, “Effective optical response of metamaterials,” Physical Review B, vol. 79, no. 24, Article ID 245132, 9 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus