Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2016, Article ID 7508904, 6 pages
http://dx.doi.org/10.1155/2016/7508904
Research Article

Carbon Nanotubes in Cementitious Composites: Dispersion, Implementation, and Influence on Mechanical Characteristics

Faculty of Civil Engineering, Institute of Technology of Building Materials and Components, Brno University of Technology, Veveri 331/95, 602 00 Brno, Czech Republic

Received 18 February 2016; Revised 23 June 2016; Accepted 14 July 2016

Academic Editor: Gonzalo Martínez-Barrera

Copyright © 2016 Tomas Jarolim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Hela, J. Marsalova, and L. Bodnarova, “Fly ashes thermal modification and their utilization in concrete,” in System-Based Vision For Strategic and Creative Design, F. Bontempi, Ed., vol. 1–3, pp. 1649–1653, 2003. View at Google Scholar
  2. L. Bodnarova, T. Jarolim, and R. Hela, “Study of effect of various types of cement on properties of cement pastes,” Advanced Materials Research, vol. 897, pp. 224–229, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Karaşin and M. Doğruyol, “An experimental study on strength and durability for utilization of fly ash in concrete mix,” Advances in Materials Science and Engineering, vol. 2014, Article ID 417514, 6 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Zhang, S. Shi, C. Wang, X. Yang, L. Guo, and S. Xue, “Preparation of cementitious material using smelting slag and tailings and the solidification and leaching of Pb2+,” Advances in Materials Science and Engineering, vol. 2015, Article ID 352567, 7 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  5. K. S. Munir, P. Kingshott, and C. Wen, “Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy—a review,” Critical Reviews in Solid State and Materials Sciences, vol. 40, no. 1, pp. 38–55, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Jiang, Z. Li, G. Fan, L. Cao, and D. Zhang, “Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes,” Scripta Materialia, vol. 66, no. 6, pp. 331–334, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Arash, Q. Wang, and V. K. Varadan, “Mechanical properties of carbon nanotube/polymer composites,” Scientific Reports, vol. 4, article 6479, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Yoonessi, M. Lebroín-Coloín, D. Scheiman, and M. A. Meador, “Carbon nanotube epoxy nanocomposites: the effects of interfacial modifications on the dynamic mechanical properties of the nanocomposites,” ACS Applied Materials & Interfaces, vol. 6, no. 19, pp. 16621–16630, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. P. A. Danoglidis, M. S. Konsta-Gdoutos, E. E. Gdoutos, and S. P. Shah, “Strength, energy absorption capability and self-sensing properties of multifunctional carbon nanotube reinforced mortars,” Construction and Building Materials, vol. 120, pp. 265–274, 2016. View at Publisher · View at Google Scholar
  10. S. Parveen, S. Rana, and R. Fangueiro, “A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites,” Journal of Nanomaterials, vol. 2013, Article ID 710175, 19 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Bastami, M. Baghbadrani, and F. Aslani, “Performance of nano-Silica modified high strength concrete at elevated temperatures,” Construction and Building Materials, vol. 68, pp. 402–408, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. A. G. Pérez-Luna, A. L. Martínez-Hernández, G. Martínez-Barrera, and C. Velasco-Santos, “Nanoreinforced concrete: effect of gamma-irradiated SiO2 nanoparticles,” Advanced Materials Letters, vol. 7, no. 2, pp. 156–162, 2016. View at Google Scholar
  13. P. Bartos, Nanotechnology of Concrete, Recent Developments and Future Perspectives: Nanotechnology in Construction: A Roadmap for Development, SP-254, American Concrete Institute, Farmington Hills, Mich, USA, 1st edition, 2008.
  14. F. Sanchez and K. Sobolev, “Nanotechnology in concrete—a review,” Construction and Building Materials, vol. 24, no. 11, pp. 2060–2071, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991. View at Publisher · View at Google Scholar · View at Scopus
  16. N. M. Mubaraka, E. C. Abdullahc, N. S. Jayakumara, and J. N. Sahua, “An overview on methods for the production of carbon nanotubes,” Journal of Industrial and Engineering Chemistry, vol. 20, no. 4, pp. 1186–1197, 2014. View at Publisher · View at Google Scholar
  17. J. Yu, N. Grossiord, C. E. Koning, and J. Loos, “Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution,” Carbon, vol. 45, no. 3, pp. 618–623, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. E. N. Ganesh, “Single walled and multi walled carbon nanotube structure, synthesis and applications,” International Journal of Innovative Technology and Exploring Engineering, vol. 2, no. 4, pp. 311–320, 2013. View at Google Scholar
  19. M. Labaj, Suppervisor: R. Hela [Ph.D. thesis], Brno University of Technology, Faculty of Civil Engineering, 2014.
  20. J. Hilding, E. A. Grulke, Z. G. Zhang, and F. Lockwood, “Dispersion of carbon nanotubes in liquids,” Journal of Dispersion Science and Technology, vol. 24, no. 1, pp. 1–41, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. J. B. Bai and A. Allaoui, “Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation,” Composites Part A: Applied Science and Manufacturing, vol. 34, no. 8, pp. 689–694, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Azoubel and S. Magdassi, “The formation of carbon nanotube dispersions by high pressure homogenization and their rapid characterization by analytical centrifuge,” Carbon, vol. 48, no. 12, pp. 3346–3352, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Collins, J. Lambert, and W. H. Duan, “The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures,” Cement and Concrete Composites, vol. 34, no. 2, pp. 201–207, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. Technical certificate of normalized sand CEN. According to EN 196-1 Methods of testing cement—part 1: determination of strength, European Committee for Standardization, 2005.
  25. O. Mendoza, G. Sierra, and J. I. Tobón, “Influence of super plasticizer and Ca(OH)2 on the stability of functionalized multi-walled carbon nanotubes dispersions for cement composites applications,” Construction and Building Materials, vol. 47, pp. 771–778, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Chuah, Z. Pan, J. G. Sanjayan, C. M. Wang, and W. H. Duan, “Nano reinforced cement and concrete composites and new perspective from graphene oxide,” Construction and Building Materials, vol. 73, pp. 113–124, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Jarolím, R. Hela, and M. Labaj, “Influence of the amount of dispersed suspension of carbon nano-tubes on physico-mechanical properties of cement mortar,” Advanced Materials Research, vol. 1106, pp. 65–68, 2015. View at Publisher · View at Google Scholar
  28. H. Förster, “UV/VIS spectroscopy,” in Characterization I, H. G. Karge and J. Weitkamp, Eds., vol. 4 of Molecular Sieves—Science and Technology, pp. 337–426, Springer, Berlin, Germany, 2004. View at Publisher · View at Google Scholar
  29. “Technical certificate of CEM I 42.5 R, Mokra (Heidelberg, Cement Czech Republic),” http://www.heidelbergcement.cz/cs/cement/volne-lozeny-cement/cemi425r.
  30. EN 196-1 Methods of testing cement—Part 1: Determination of strength, European Committee for Standardization, 2005.
  31. L. Gao, H. Yin, H. Zhu, X. Mao, F. Gan, and D. Wang, “Separation of dispersed carbon nanotubes from water: effect of pH and surfactants on the aggregation at oil/water interface,” Separation and Purification Technology, vol. 129, pp. 113–120, 2014. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Nochaiya and A. Chaipanich, “Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials,” Applied Surface Science, vol. 257, no. 6, pp. 1941–1945, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Xu, J. Liu, and Q. Li, “Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste,” Construction and Building Materials, vol. 76, pp. 16–23, 2015. View at Publisher · View at Google Scholar · View at Scopus
  34. J. M. Makar, J. C. Margeson, and J. Luh, “Carbon nanotube/cement composites—early reasults and potential applications,” in Proceedings of the 3rd International Conference of Construction Materials, pp. 1–10, Vancouver, Canada, August 2005.
  35. J. M. Makar and G. W. Chan, “Growth of cement hydration products on single-walled carbon nanotubes,” Journal of the American Ceramic Society, vol. 92, no. 6, pp. 1303–1310, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. M. S. Konsta-Gdoutosa, Z. S. Metaxaa, and S. P. Shahb, “Highly dispersed carbon nanotube reinforced cement based materials,” Cement and Concrete Research, vol. 40, no. 7, pp. 1052–1059, 2010. View at Publisher · View at Google Scholar