Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2016, Article ID 8205984, 7 pages
http://dx.doi.org/10.1155/2016/8205984
Research Article

Preparation of Antheraea pernyi Silk Fibroin Microparticles through a Facile Electrospinning Method

1College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
2National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China

Received 16 April 2016; Revised 9 July 2016; Accepted 20 July 2016

Academic Editor: Mikhael Bechelany

Copyright © 2016 Xiufang Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. E. Thurber, F. G. Omenetto, and D. L. Kaplan, “In vivo bioresponses to silk proteins,” Biomaterials, vol. 71, Article ID 17034, pp. 145–157, 2015. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Kundu, N. E. Kurland, S. Bano et al., “Silk proteins for biomedical applications: bioengineering perspectives,” Progress in Polymer Science, vol. 39, no. 2, pp. 251–267, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. Luo, Q. Zhang, M. Shi, Y. Zhang, W. Tao, and M. Li, “Effect of pore size on the biodegradation rate of silk fibroin scaffolds,” Advances in Materials Science and Engineering, vol. 2015, Article ID 315397, 7 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. A. S. Lammel, X. Hu, S.-H. Park, D. L. Kaplan, and T. R. Scheibel, “Controlling silk fibroin particle features for drug delivery,” Biomaterials, vol. 31, no. 16, pp. 4583–4591, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Cao, X. Chen, J. Yao, L. Huang, and Z. Shao, “The preparation of regenerated silk fibroin microspheres,” Soft Matter, vol. 3, no. 7, pp. 910–915, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Subia, S. Chandra, S. Talukdar, and S. C. Kundu, “Folate conjugated silk fibroin nanocarriers for targeted drug delivery,” Integrative Biology, vol. 6, no. 2, pp. 203–214, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Shi, S. A. Abbah, K. Saran et al., “Silk fibroin-based complex particles with bioactive encrustation for bone morphogenetic protein 2 delivery,” Biomacromolecules, vol. 14, no. 12, pp. 4465–4474, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Schultz, F. Vollmers, T. Lühmann et al., “Pulmonary insulin-like growth factor I delivery from trehalose and silk-fibroin microparticles,” ACS Biomaterials Science & Engineering, vol. 1, no. 2, pp. 119–129, 2015. View at Publisher · View at Google Scholar
  9. J. Wang, S. Zhang, T. Xing et al., “Ion-induced fabrication of silk fibroin nanoparticles from Chinese oak tasar Antheraea pernyi,” International Journal of Biological Macromolecules, vol. 79, pp. 316–325, 2015. View at Publisher · View at Google Scholar · View at Scopus
  10. R. You, Y. Xu, Y. Liu, X. Li, and M. Li, “Comparison of the in vitro and in vivo degradations of silk fibroin scaffolds from mulberry and nonmulberry silkworms,” Biomedical Materials, vol. 10, no. 1, Article ID 015003, 2015. View at Publisher · View at Google Scholar · View at Scopus
  11. X.-Y. Luan, Y. Wang, X. Duan et al., “Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films,” Biomedical Materials, vol. 1, no. 4, article 181, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Shao, J. He, F. Sang et al., “Enhanced bone formation in electrospun poly(l-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide,” Materials Science and Engineering: C, vol. 62, pp. 823–834, 2016. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Minoura, S.-I. Aiba, M. Higuchi, Y. Gotoh, M. Tsukada, and Y. Imai, “Attachment and growth of fibroblast cells on silk fibroin,” Biochemical and Biophysical Research Communications, vol. 208, no. 2, pp. 511–516, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Sridhar, R. Lakshminarayanan, K. Madhaiyan, V. A. Barathi, K. H. C. Limh, and S. Ramakrishna, “Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals,” Chemical Society Reviews, vol. 44, no. 3, pp. 790–814, 2015. View at Publisher · View at Google Scholar · View at Scopus
  15. J. He, Y. Cheng, and S. Cui, “Preparation and characterization of electrospun Antheraea pernyi silk fibroin nanofibers from aqueous solution,” Journal of Applied Polymer Science, vol. 128, no. 2, pp. 1081–1088, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Cao, X. Chen, L. Huang, and Z. Shao, “Electrospinning of reconstituted silk fiber from aqueous silk fibroin solution,” Materials Science and Engineering C, vol. 29, no. 7, pp. 2270–2274, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. H.-J. Jin, J. Chen, V. Karageorgiou, G. H. Altman, and D. L. Kaplan, “Human bone marrow stromal cell responses on electrospun silk fibroin mats,” Biomaterials, vol. 25, no. 6, pp. 1039–1047, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. A. J. Meinel, K. E. Kubow, E. Klotzsch et al., “Optimization strategies for electrospun silk fibroin tissue engineering scaffolds,” Biomaterials, vol. 30, no. 17, pp. 3058–3067, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Fong, I. Chun, and D. H. Reneker, “Beaded nanofibers formed during electrospinning,” Polymer, vol. 40, no. 16, pp. 4585–4592, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, and S. G. Lee, “The change of bead morphology formed on electrospun polystyrene fibers,” Polymer, vol. 44, no. 14, pp. 4029–4034, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. H.-J. Jin, S. V. Fridrikh, G. C. Rutledge, and D. L. Kaplan, “Electrospinning Bombyx mori silk with poly(ethylene oxide),” Biomacromolecules, vol. 3, no. 6, pp. 1233–1239, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Li, W. Tao, S. Kuga, and Y. Nishiyama, “Controlling molecular conformation of regenerated wild silk fibroin by aqueous ethanol treatment,” Polymers for Advanced Technologies, vol. 14, no. 10, pp. 694–698, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Panyam and V. Labhasetwar, “Biodegradable nanoparticles for drug and gene delivery to cells and tissue,” Advanced Drug Delivery Reviews, vol. 55, no. 3, pp. 329–347, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Zhen, W. Tang, H. Chen et al., “RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors,” ACS Nano, vol. 7, no. 6, pp. 4830–4837, 2013. View at Publisher · View at Google Scholar · View at Scopus