Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2017 (2017), Article ID 9750323, 7 pages
https://doi.org/10.1155/2017/9750323
Research Article

Effect of Ga on the Inoxidizability and Wettability of Sn-0.5Ag-0.7Cu-0.05Pr Solder

1College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210016, China

Correspondence should be addressed to Xue Songbai; nc.ude.aaun@bseux

Received 27 May 2017; Accepted 21 June 2017; Published 10 September 2017

Academic Editor: Patrice Berthod

Copyright © 2017 Xu Jiachen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Xiao, S. Xue, Y. Hu, H. Ye, L. Gao, and H. Wang, “Properties and microstructure of Sn-9Zn lead-free solder alloy bearing Pr,” Journal of Materials Science: Materials in Electronics, vol. 22, no. 6, pp. 659–665, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Zhao, L. Qi, X.-M. Wang, and L. Wang, “Influence of Bi on microstructures evolution and mechanical properties in Sn-Ag-Cu lead-free solder,” Journal of Alloys and Compounds, vol. 375, no. 1-2, pp. 196–201, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. K. S. Kim, S. H. Huh, and K. Suganuma, “Effects of intermetallic compounds on properties of Sn-Ag-Cu lead-free soldered joints,” Journal of Alloys and Compounds, vol. 352, no. 1-2, pp. 226–236, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. T. H. Chuang, M. W. Wu, S. Y. Chang, S. F. Ping, and L. C. Tsao, “Strengthening mechanism of nano-Al 2O 3 particles reinforced Sn3.5Ag0.5Cu lead-free solder,” Journal of Materials Science: Materials in Electronics, vol. 22, no. 8, pp. 1021–1027, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. D. A.-A. Shnawah, S. B. M. Said, M. F. M. Sabri, I. A. Badruddin, and F. X. Che, “Novel Fe-containing Sn-1Ag-0.5Cu lead-free solder alloy with further enhanced elastic compliance and plastic energy dissipation ability for mobile products,” Microelectronics Reliability, vol. 52, no. 11, pp. 2701–2708, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. D. X. Luo, S. B. Xue, and Z. Q. Li, “Effects of Ga addition on microstructure and properties of Sn-0.5Ag-0.7Cu solder,” Journal of Materials Science: Materials in Electronics, vol. 25, no. 8, pp. 3566–3571, 2014. View at Publisher · View at Google Scholar
  7. D.-X. Luo, S.-B. Xue, and S. Liu, “Investigation on the intermetallic compound layer growth of Sn–0.5Ag–0.7Cu–xGa/Cu solder joints during isothermal aging,” Journal of Materials Science: Materials in Electronics, vol. 25, no. 12, pp. 5195–5200, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. A. E. Hammad, “Investigation of microstructure and mechanical properties of novel Sn-0.5Ag-0.7Cu solders containing small amount of Ni,” Materials & Design, vol. 50, pp. 108–116, 2013. View at Publisher · View at Google Scholar
  9. J. Glazer, “Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: a review,” Journal of Electronic Materials, vol. 23, no. 8, pp. 693–700, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Zhang, S.-B. Xue, L.-L. Gao et al., “Microstructure characterization of SnAgCu solder bearing Ce for electronic packaging,” Microelectronic Engineering, vol. 88, no. 9, pp. 2848–2851, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. A. A. El-Daly and A. M. El-Taher, “Evolution of thermal property and creep resistance of Ni and Zn-doped Sn-2.0Ag-0.5Cu lead-free solders,” Materials & Design, vol. 51, pp. 789–796, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Gao, J. Lin, Y. Lei, and G. Wen, “Drop performance research of silver content on the SnAgCu based lead-free solder of joint level,” in Proceedings of the 2013 14th International Conference on Electronic Packaging Technology, ICEPT 2013, pp. 809–813, chn, August 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Liu, F. Sun, and X. Li, “Effect of Ni, Bi concentration on the microstructure and shear behavior of low-Ag SAC-Bi-Ni/Cu solder joints,” Journal of Materials Science: Materials in Electronics, vol. 25, no. 6, pp. 2627–2633, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. T. J. Anderson and I. Ansara, “The Ga-Sn (gallium-tin) system,” Journal of Phase Equilibria, vol. 13, no. 2, pp. 181–189, 1992. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Chen, S. Xue, H. Wang, J. Wang, and Z. Han, “Investigation on properties of Ga to Sn-9Zn lead-free solder,” Journal of Materials Science: Materials in Electronics, vol. 21, no. 5, pp. 496–502, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Ren, M. Li, and D. Mao, “Effect of alloying elements on the high-temperature oxidation resistance of Sn-Zn based lead-free solder,” Electronic Components and Materials, vol. 11, article 015, 2014. View at Google Scholar
  17. P. Xue, S.-B. Xue, Y.-F. Shen, F. Long, and H. Zhu, “Mechanism of reaction between Nd and Ga in Sn-Zn-0.5Ga-xNd solder,” Journal of Electronic Materials, vol. 43, no. 9, pp. 3404–3410, 2014. View at Publisher · View at Google Scholar · View at Scopus