Table of Contents
Advances in Nephrology
Volume 2014 (2014), Article ID 903158, 11 pages
http://dx.doi.org/10.1155/2014/903158
Review Article

Rho-GTPase Signalling in the Pathogenesis of Nephrotic Syndrome

Division of Nephrology, McGill University Health Centre, 3775 University Street, Room 236, Montreal, QC, Canada H3A 2B4

Received 2 March 2014; Accepted 21 May 2014; Published 15 June 2014

Academic Editor: James Stockand

Copyright © 2014 Richard Robins and Tomoko Takano. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Sato and M. Yanagita, “Renal anemia: from incurable to curable,” American Journal of Physiology: Renal Physiology, vol. 305, no. 9, pp. F1239–F1248, 2013. View at Publisher · View at Google Scholar
  2. H. Kobori, M. Nangaku, L. G. Navar, and A. Nishiyama, “The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease,” Pharmacological Reviews, vol. 59, no. 3, pp. 251–287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Mather and C. Pollock, “Glucose handling by the kidney,” Kidney international, no. 120, pp. S1–S6, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. S. E. Quaggin and J. A. Kreidberg, “Development of the renal glomerulus: good neighbors and good fences,” Development, vol. 135, no. 4, pp. 609–620, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Fulladosa, F. Moreso, J. A. Narváez, J. M. Grinyó, and D. Serón, “Estimation of total glomerular number in stable renal transplants,” Journal of the American Society of Nephrology, vol. 14, no. 10, pp. 2662–2668, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. N. D. Rosenblum, “Developmental biology of the human kidney,” Seminars in Fetal and Neonatal Medicine, vol. 13, no. 3, pp. 125–132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. S. Kanwar, M. L. Jakubowski, L. J. Rosenzweig, and J. T. Gibbons, “De novo cellular synthesis of sulfated proteoglycans of the developing renal glomerulus in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 22, pp. 7108–7111, 1984. View at Google Scholar · View at Scopus
  8. K. J. Reidy and N. D. Rosenblum, “Cell and molecular biology of kidney development,” Seminars in Nephrology, vol. 29, no. 4, pp. 321–337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Gatta, A. Verardo, and M. Bolognesi, “Hypoalbuminemia,” Internal and Emergency Medicine, vol. 7, supplement 3, pp. S193–S199, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Kanfer, “Coagulation factors in nephrotic syndrome,” American Journal of Nephrology, vol. 10, supplement 1, pp. 63–68, 1990. View at Google Scholar · View at Scopus
  11. H. A. Al-Bander, V. I. Martin, and G. A. Kaysen, “Plasma IgG pool is not defended from urinary loss in nephrotic syndrome,” American Journal of Physiology: Renal Fluid and Electrolyte Physiology, vol. 262, no. 3, pp. F333–F337, 1992. View at Google Scholar · View at Scopus
  12. B. Haraldsson and M. Jeansson, “Glomerular filtration barrier,” Current Opinion in Nephrology and Hypertension, vol. 18, no. 4, pp. 331–335, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Reiser, K. R. Polu, C. C. Möller et al., “TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function,” Nature Genetics, vol. 37, no. 7, pp. 739–744, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Tao, C. Polumbo, K. Reidy, M. Sweetwyne, and K. Susztak, “A multicolor podocyte reporter highlights heterogeneous podocyte changes in focal segmental glomerulosclerosis,” Kidney International, vol. 85, pp. 972–980, 2014. View at Publisher · View at Google Scholar
  15. M. C. Menon, P. Y. Chuang, and C. J. He, “The glomerular filtration barrier: components and crosstalk,” International Journal of Nephrology, vol. 2012, Article ID 749010, 9 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. A. G. Davies, R. J. Postlethwaite, D. A. Price, J. L. Burn, C. A. Houlton, and B. A. Fielding, “Urinary albumin excretion in school children,” Archives of Disease in Childhood, vol. 59, no. 7, pp. 625–630, 1984. View at Google Scholar · View at Scopus
  17. M. Abbate, C. Zoja, and G. Remuzzi, “How does proteinuria cause progressive renal damage?” Journal of the American Society of Nephrology, vol. 17, no. 11, pp. 2974–2984, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. H. Little, “Regrow or repair: potential regenerative therapies for the kidney,” Journal of the American Society of Nephrology, vol. 17, no. 9, pp. 2390–2401, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Joshi, R. Andersen, B. Jespersen, and S. Rittig, “Genetics of steroid-resistant nephrotic syndrome: a review of mutation spectrum and suggested approach for genetic testing,” Acta Paediatrica, vol. 102, no. 9, pp. 844–856, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Hussain, J. A. Zello, J. Vasilevska-Ristovska et al., “The rationale and design of Insight into Nephrotic Syndrome: Investigating Genes, Health and Therapeutics (INSIGHT): a prospective cohort study of childhood nephrotic syndrome,” BMC Nephrology, vol. 14, no. 1, article 25, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Benoit, E. MacHuca, and C. Antignac, “Hereditary nephrotic syndrome: a systematic approach for genetic testing and a review of associated podocyte gene mutations,” Pediatric Nephrology, vol. 25, no. 9, pp. 1621–1632, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Y. Gee, P. Saisawat, S. Ashraf et al., “ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling,” The Journal of Clinical Investigation, vol. 123, no. 8, pp. 3243–3253, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Fakhouri, N. Bocquet, P. Taupin et al., “Steroid-sensitive nephrotic syndrome: from childhood to adulthood,” American Journal of Kidney Diseases, vol. 41, no. 3, pp. 550–557, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. J. A. Kari and M. Halawani, “Treatment of steroid resistant nephrotic syndrome in children.,” Saudi Journal of Kidney Diseases and Transplantation, vol. 21, no. 3, pp. 484–487, 2010. View at Google Scholar · View at Scopus
  25. R. M. Lombel, E. M. Hodson, and D. S. Gipson, “Treatment of steroid-resistant nephrotic syndrome in children: new guidelines from KDIGO,” Pediatric Nephrology, vol. 28, no. 3, pp. 409–414, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. B. G. Hinkes, B. Mucha, C. N. Vlangos et al., “Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2),” Pediatrics, vol. 119, no. 4, pp. e907–e919, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Jalanko, “Congenital nephrotic syndrome,” Pediatric Nephrology, vol. 24, no. 11, pp. 2121–2128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Zenker, T. Aigner, O. Wendler et al., “Human laminin β2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities,” Human Molecular Genetics, vol. 13, no. 21, pp. 2625–2632, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Hinkes, R. C. Wiggins, R. Gbadegesin et al., “Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible,” Nature Genetics, vol. 38, no. 12, pp. 1397–1405, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Machuca, G. Benoit, and C. Antignac, “Genetics of nephrotic syndrome: connecting molecular genetics to podocyte physiology,” Human Molecular Genetics, vol. 18, no. 2, pp. R185–R194, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Greka and P. Mundel, “Cell biology and pathology of podocytes,” Annual Review of Physiology, vol. 74, pp. 299–323, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Pavenstädt, W. Kriz, and M. Kretzler, “Cell biology of the glomerular podocyte,” Physiological Reviews, vol. 83, no. 1, pp. 253–307, 2003. View at Google Scholar · View at Scopus
  33. G. I. Welsh and M. A. Saleem, “The podocyte cytoskeleton-key to a functioning glomerulus in health and disease,” Nature Reviews Nephrology, vol. 8, no. 1, pp. 14–21, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Benzing, “Signaling at the slit diaphragm,” Journal of the American Society of Nephrology, vol. 15, no. 6, pp. 1382–1391, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. W. Kriz, I. Shirato, M. Nagata, M. LeHir, and K. V. Lemley, “The podocyte's response to stress: the enigma of foot process effacement,” American Journal of Physiology: Renal Physiology, vol. 304, no. 4, pp. F333–F347, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Yu, H. Suleiman, A. H. Kim et al., “Rac1 activation in podocytes induces rapid foot process effacement and proteinuria,” Molecular and Cellular Biology, vol. 33, pp. 4755–4764, 2013. View at Publisher · View at Google Scholar
  37. R. P. Scott, S. P. Hawley, J. Ruston et al., “Podocyte-specific loss of Cdc42 leads to congenital nephropathy,” Journal of the American Society of Nephrology, vol. 23, no. 7, pp. 1149–1154, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. S. J. Shankland, “The podocyte's response to injury: role in proteinuria and glomerulosclerosis,” Kidney International, vol. 69, no. 12, pp. 2131–2147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Oda, M. Iwasa, T. Aihara, Y. Maeda, and A. Narita, “The nature of the globular- to fibrous-actin transition,” Nature, vol. 457, pp. 441–445, 2009. View at Publisher · View at Google Scholar
  40. J. Stricker, T. Falzone, and M. L. Gardel, “Mechanics of the F-actin cytoskeleton,” Journal of Biomechanics, vol. 43, no. 1, pp. 9–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. X. Yao and P. A. Rubenstein, “F-actin-like ATPase activity in a polymerization-defective mutant yeast actin (V266G/L267G),” The Journal of Biological Chemistry, vol. 276, no. 27, pp. 25598–25604, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. J. K. J. Deegens, H. B. P. M. Dijkman, G. F. Borm et al., “Podocyte foot process effacement as a diagnostic tool in focal segmental glomerulosclerosis,” Kidney International, vol. 74, no. 12, pp. 1568–1576, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. R. C. Nayak, K. H. Chang, N. S. Vaitinadin, and J. A. Cancelas, “Rho GTPases control specific cytoskeleton-dependent functions of hematopoietic stem cells,” Immunological Reviews, vol. 256, pp. 255–268, 2013. View at Google Scholar
  44. S. J. Heasman and A. J. Ridley, “Mammalian Rho GTPases: new insights into their functions from in vivo studies,” Nature Reviews Molecular Cell Biology, vol. 9, no. 9, pp. 690–701, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Boulter, S. Estrach, R. Garcia-Mata, and C. C. Féral, “Off the beaten paths: alternative and crosstalk regulation of Rho GTPases,” FASEB Journal, vol. 26, no. 2, pp. 469–479, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Pellegrin and H. Mellor, “Actin stress fibers,” Journal of Cell Science, vol. 120, no. 20, pp. 3491–3499, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. X. R. Bustelo, V. Sauzeau, and I. M. Berenjeno, “GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo,” BioEssays, vol. 29, no. 4, pp. 356–370, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Amano, M. Nakayama, and K. Kaibuchi, “Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity,” Cytoskeleton, vol. 67, no. 9, pp. 545–554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Asanuma, E. Yanagida-Asanuma, C. Faul, Y. Tomino, K. Kim, and P. Mundel, “Synaptopodin orchestrates actin organization and cell motility via regulation of RhoA signalling,” Nature Cell Biology, vol. 8, no. 5, pp. 485–491, 2006. View at Google Scholar · View at Scopus
  50. K. Asanuma, K. Kim, J. Oh et al., “Synaptopodin regulates the actin-bundling activity of α-actinin in an isoform-specific manner,” The Journal of Clinical Investigation, vol. 115, no. 5, pp. 1188–1198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Zhu, R. Jiang, L. Aoudjit, N. Jones, and T. Takano, “Activation of RhoA in podocytes induces focal segmental glomerulosclerosis,” Journal of the American Society of Nephrology, vol. 22, no. 9, pp. 1621–1630, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Shigehara, C. Zaragoza, C. Kitiyakara et al., “Inducible podocyte-specific gene expression in transgenic mice,” Journal of the American Society of Nephrology, vol. 14, no. 8, pp. 1998–2003, 2003. View at Google Scholar · View at Scopus
  53. J. Hughes, M. Nangaku, C. E. Alpers, S. J. Shankland, W. G. Couser, and R. J. Johnson, “C5b-9 membrane attack complex mediates endothelial cell apoptosis in experimental glomerulonephritis,” American Journal of Physiology: Renal Physiology, vol. 278, no. 5, pp. F747–F757, 2000. View at Google Scholar · View at Scopus
  54. H. Zhang, A. V. Cybulsky, L. Aoudjit et al., “Role of Rho-GTPases in complement-mediated glomerular epithelial cell injury,” American Journal of Physiology: Renal Physiology, vol. 293, no. 1, pp. F148–F156, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Wang, M. J. Ellis, J. A. Gomez et al., “Mechanisms of the proteinuria induced by Rho GTPases,” Kidney International, vol. 81, no. 11, pp. 1075–1085, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Babelova, F. Jansen, K. Sander et al., “Activation of Rac-1 and RhoA contributes to podocyte injury in chronic kidney disease,” PLoS ONE, vol. 8, no. 11, Article ID e80328, 2013. View at Publisher · View at Google Scholar
  57. H. Yang, B. Zhao, C. Liao et al., “High glucose-induced apoptosis in cultured podocytes involves TRPC6-dependent calcium entry via the RhoA/ROCK pathway,” Biochemical and Biophysical Research Communications, vol. 434, no. 2, pp. 394–400, 2013. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Matoba, D. Kawanami, R. Okada et al., “Rho-kinase inhibition prevents the progression of diabetic nephropathy by downregulating hypoxia-inducible factor 1α,” Kidney International, vol. 84, no. 3, pp. 545–554, 2013. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Jeruschke, A. K. Büscher, J. Oh et al., “Protective effects of the mTOR inhibitor everolimus on cytoskeletal injury in human podocytes are mediated by RhoA signaling,” PLoS ONE, vol. 8, no. 2, Article ID e55980, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Zhu, X. Qi, L. Aoudjit et al., “Nuclear factor of activated T cells mediates RhoA-induced fibronectin upregulation in glomerular podocytes,” American Journal of Physiology: Renal Physiology, vol. 304, no. 7, pp. F849–F862, 2013. View at Publisher · View at Google Scholar · View at Scopus
  61. D. Michaelson, J. Silletti, G. Murphy, P. D'Eustachio, M. Rush, and M. R. Philips, “Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding,” The Journal of Cell Biology, vol. 152, no. 1, pp. 111–126, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. A. J. Ridley, H. F. Paterson, C. L. Johnston, D. Diekmann, and A. Hall, “The small GTP-binding protein rac regulates growth factor-induced membrane ruffling,” Cell, vol. 70, no. 3, pp. 401–410, 1992. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Venkatareddy, L. Cook, K. Abuarquob, R. Verma, and P. Garg, “Nephrin regulates lamellipodia formation by assembling a protein complex that includes Ship2, Filamin and Lamellipodin,” PLoS ONE, vol. 6, no. 12, Article ID e28710, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. O. Attias, R. Jiang, L. Aoudjit, H. Kawachi, and T. Takano, “Rac1 contributes to actin organization in glomerular podocytes,” Nephron: Experimental Nephrology, vol. 114, no. 3, pp. e93–e106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Zhu, N. Sun, L. Aoudjit et al., “Nephrin mediates actin reorganization via phosphoinositide 3-kinase in podocytes,” Kidney International, vol. 73, no. 5, pp. 556–566, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. J. V. Small, T. Stradal, E. Vignal, and K. Rottner, “The lamellipodium: where motility begins,” Trends in Cell Biology, vol. 12, no. 3, pp. 112–120, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Akilesh, H. Suleiman, H. Yu et al., “Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis,” The Journal of Clinical Investigation, vol. 121, no. 10, pp. 4127–4137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Verma, I. Kovari, A. Soofi, D. Nihalani, K. Patrie, and L. B. Holzman, “Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization,” The Journal of Clinical Investigation, vol. 116, no. 5, pp. 1346–1359, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. S. M. Blattner, J. B. Hodgin, M. Nishio et al., “Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury,” Kidney International, vol. 84, pp. 920–930, 2013. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Kojima, A. Davidovits, H. Poczewski et al., “Podocyte flattening and disorder of glomerular basement membrane are associated with splitting of dystroglycan-matrix interaction,” Journal of the American Society of Nephrology, vol. 15, no. 8, pp. 2079–2089, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. F. Guo, J. A. Cancelas, D. Hildeman, D. A. Williams, and Y. Zheng, “Rac GTPase isoforms Rac1 and Rac2 play a redundant and crucial role in T-cell development,” Blood, vol. 112, no. 5, pp. 1767–1775, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Corbetta, S. Gualdoni, G. Ciceri et al., “Essential role of Rac1 and Rac3 GTPases in neuronal development,” FASEB Journal, vol. 23, no. 5, pp. 1347–1357, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. X. Lin, J. H. Suh, G. Go, and J. H. Miner, “Feasibility of repairing glomerular basement membrane defects in alport syndrome,” Journal of the American Society of Nephrology, vol. 25, no. 4, pp. 687–692, 2014. View at Publisher · View at Google Scholar
  74. X. Fan, M. Petitt, M. Gamboa et al., “Transient, inducible, placenta-specific gene expression in mice,” Endocrinology, vol. 153, no. 11, pp. 5637–5644, 2012. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Shibata, M. Nagase, S. Yoshida et al., “Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease,” Nature Medicine, vol. 14, no. 12, pp. 1370–1376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. I. R. Gupta, C. Baldwin, D. Auguste et al., “ARHGDIA: a novel gene implicated in nephrotic syndrome,” Journal of Medical Genetics, vol. 50, no. 5, pp. 330–338, 2013. View at Publisher · View at Google Scholar · View at Scopus
  77. O. B. Matas, J. Á. Martínez-Menárguez, and G. Egea, “Association of Cdc42/N-WASP/Arp2/3 signaling pathway with Golgi membranes,” Traffic, vol. 5, no. 11, pp. 838–846, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Krugmann, I. Jordens, K. Gevaert, M. Driessens, J. Vandekerckhove, and A. Hall, “Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex,” Current Biology, vol. 11, no. 21, pp. 1645–1655, 2001. View at Publisher · View at Google Scholar · View at Scopus
  79. F. Mouawad, H. Tsui, and T. Takano, “Role of Rho-GTPases and their regulatory proteins in glomerular podocyte function,” Canadian Journal of Physiology and Pharmacology, vol. 91, no. 10, pp. 773–782, 2013. View at Publisher · View at Google Scholar
  80. C. Wei, C. C. Möller, M. M. Altintas et al., “Modification of kidney barrier function by the urokinase receptor,” Nature Medicine, vol. 14, no. 1, pp. 55–63, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. R. J. H. Maas, J. K. J. Deegens, and J. F. M. Wetzels, “Serum suPAR in patients with FSGS: trash or treasure?” Pediatric Nephrology, vol. 28, no. 7, pp. 1041–1048, 2013. View at Publisher · View at Google Scholar · View at Scopus
  82. F. C. Luft, “UPAR signaling is under par for the podocyte course,” Journal of Molecular Medicine, vol. 90, no. 12, pp. 1357–1359, 2012. View at Publisher · View at Google Scholar · View at Scopus
  83. M. C. Boonstra, H. W. Verspaget, S. Ganesh et al., “Clinical applications of the urokinase receptor (uPAR) for cancer patients,” Current Pharmaceutical Design, vol. 17, no. 19, pp. 1890–1910, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. C. Wei, S. El Hindi, J. Li et al., “Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis,” Nature Medicine, vol. 17, no. 8, pp. 952–960, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. R. Garcia-Mata, E. Boulter, and K. Burridge, “The “invisible hand”: regulation of RHO GTPases by RHOGDIs,” Nature Reviews Molecular Cell Biology, vol. 12, no. 8, pp. 493–504, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. J. Tcherkezian and N. Lamarche-Vane, “Current knowledge of the large RhoGAP family of proteins,” Biology of the Cell, vol. 99, no. 2, pp. 67–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. K. L. Rossman, C. J. Der, and J. Sondek, “GEF means go: turning on Rho GTPases with guanine nucleotide-exchange factors,” Nature Reviews Molecular Cell Biology, vol. 6, no. 2, pp. 167–180, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. H. Weavers, S. Prieto-Sánchez, F. Grawe et al., “The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm,” Nature, vol. 457, no. 7227, pp. 322–326, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Laurin, A. Dumouchel, Y. Fukui, and J. F. Cote, “The Rac-specific exchange factors Dock1 and Dock5 are dispensable for the establishment of the glomerular filtration barrier in vivo,” Small GTPases, vol. 4, no. 4, pp. 221–230, 2013. View at Publisher · View at Google Scholar
  90. F. Mouawad, L. Aoudjit, R. Jiang, K. Szaszi, and T. Takano, “Role of guanine nucleotide exchange factor-H1 in complement-mediated RhoA activation in glomerular epithelial cells,” The Journal of Biological Chemistry, vol. 289, pp. 4206–4218, 2014. View at Publisher · View at Google Scholar
  91. J. Birkenfeld, P. Nalbant, B. P. Bohl, O. Pertz, K. M. Hahn, and G. M. Bokoch, “GEF-H1 modulates localized RhoA activation during cytokinesis under the control of mitotic kinases,” Developmental Cell, vol. 12, no. 5, pp. 699–712, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. K. Tonami, Y. Kurihara, S. Arima et al., “Calpain-6, a microtubule-stabilizing protein, regulates Rac1 activity and cell motility through interaction with GEF-H1,” Journal of Cell Science, vol. 124, no. 8, pp. 1214–1223, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Togawa, J. Miyoshi, H. Ishizaki et al., “Progressive impairment of kidneys and reproductive organs in mice lacking Rho GDIα,” Oncogene, vol. 18, no. 39, pp. 5373–5380, 1999. View at Publisher · View at Google Scholar · View at Scopus
  94. S. T. Hussain, M. Paul, S. Plein et al., “Design and rationale of the MR-INFORM study: stress perfusion cardiovascular magnetic resonance imaging to guide the management of patients with stable coronary artery disease,” Journal of Cardiovascular Magnetic Resonance, vol. 14, no. 1, article 65, 2012. View at Publisher · View at Google Scholar · View at Scopus
  95. L. G. Biesecker, “Exome sequencing makes medical genomics a reality,” Nature Genetics, vol. 42, no. 1, pp. 13–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. S. J. Harvey, G. Jarad, J. Cunningham et al., “Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease,” Journal of the American Society of Nephrology, vol. 19, no. 11, pp. 2150–2158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. S. V. Dandapani, H. Sugimoto, B. D. Matthews et al., “α-actinin-4 is required for normal podocyte adhesion,” The Journal of Biological Chemistry, vol. 282, no. 1, pp. 467–477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. N. Shih, J. Li, V. Karpitskii et al., “Congenital nephrotic syndrome in mice lacking CD2-associated protein,” Science, vol. 286, no. 5438, pp. 312–315, 1999. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Barua, E. J. Brown, V. T. Charoonratana, G. Genovese, H. Sun, and M. R. Pollak, “Mutations in the INF2 gene account for a significant proportion of familial but not sporadic focal and segmental glomerulosclerosis,” Kidney International, vol. 83, no. 2, pp. 316–322, 2013. View at Publisher · View at Google Scholar · View at Scopus
  100. C. Mele, P. Iatropoulos, R. Donadelli et al., “MYO1E mutations and childhood familial focal segmental glomerulosclerosis,” The New England Journal of Medicine, vol. 365, no. 4, pp. 295–306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. P. Mundel and J. Reiser, “Proteinuria: an enzymatic disease of the podocyte,” Kidney International, vol. 77, no. 7, pp. 571–580, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. H. Ma, A. Togawa, K. Soda et al., “Inhibition of podocyte FAK protects against proteinuria and foot process effacement,” Journal of the American Society of Nephrology, vol. 21, no. 7, pp. 1145–1156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. R. V. Durvasula and S. J. Shankland, “Podocyte injury and targeting therapy: an update,” Current Opinion in Nephrology and Hypertension, vol. 15, no. 1, pp. 1–7, 2006. View at Google Scholar · View at Scopus
  104. M. Kestilä, U. Lenkkeri, M. Männikkö et al., “Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome,” Molecular Cell, vol. 1, no. 4, pp. 575–582, 1998. View at Google Scholar · View at Scopus
  105. W. Bechtel, M. Helmstädter, J. Balica et al., “Vps34 deficiency reveals the importance of endocytosis for podocyte homeostasis,” Journal of the American Society of Nephrology, vol. 24, no. 5, pp. 727–743, 2013. View at Publisher · View at Google Scholar · View at Scopus
  106. D. P. Leone, K. Srinivasan, C. Brakebusch, and S. K. McConnell, “The Rho GTPase Rac1 is required for proliferation and survival of progenitors in the developing forebrain,” Developmental Neurobiology, vol. 70, no. 9, pp. 659–678, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. J. Melendez, K. Stengel, X. Zhou et al., “RhoA GTPase is dispensable for actomyosin regulation but is essential for mitosis in primary Mouse embryonic fibroblasts,” The Journal of Biological Chemistry, vol. 286, no. 17, pp. 15132–15137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Zhang, X. Zhou, R. A. Lang, and F. Guo, “RhoA of the Rho family small GTPases is essential for B lymphocyte development,” PLoS ONE, vol. 7, no. 3, Article ID e33773, 2012. View at Publisher · View at Google Scholar · View at Scopus
  109. X. Shang, F. Marchioni, C. R. Evelyn et al., “Small-molecule inhibitors targeting G-protein-coupled Rho guanine nucleotide exchange factors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 8, pp. 3155–3160, 2013. View at Publisher · View at Google Scholar · View at Scopus
  110. X. Shang, F. Marchioni, N. Sipes et al., “Rational design of small molecule inhibitors targeting rhoa subfamily Rho GTPases,” Chemistry and Biology, vol. 19, no. 6, pp. 699–710, 2012. View at Publisher · View at Google Scholar · View at Scopus
  111. T. Lu, J. C. He, Z. Wang et al., “HIV-1 Nef disrupts the podocyte actin cytoskeleton by interacting with diaphanous interacting protein,” The Journal of Biological Chemistry, vol. 283, no. 13, pp. 8173–8182, 2008. View at Publisher · View at Google Scholar · View at Scopus