Abstract

The aim of this paper is to study a nonlinear stationary Stokes problem with mixed boundary conditions that describes the ice velocity and pressure fields of grounded glaciers under Glen's flow law. Using convex analysis arguments, we prove the existence and the uniqueness of a weak solution. A finite element method is applied with approximation spaces that satisfy the inf-sup condition, and a priori error estimates are established by using a quasinorm technique. Several algorithms (including Newton's method) are proposed to solve the nonlinearity of the Stokes problem and are proved to be convergent. Our results are supported by numerical convergence studies.

1. Introduction

In this paper we consider a model problem that is commonly used by glaciologists to compute the motion of glaciers. Ice is assumed to be an incompressible non-Newtonian fluid governed by Glen's law [1]. Glen's law and the mass momentum equation lead to a nonlinear stationary Stokes problem with a strain-dependent viscosity.

Glacier models based on Glen's law have already been studied by several authors. However, all of them have considered a simplified model, called first-order approximation [2]. This model is obtained by rewriting the Stokes equations into a dimensionless form and by dropping all terms of order ๐’ช(๐œ–2), where ๐œ– is the typical aspect ratio of glaciers. This simplification results into a nonlinear elliptic problem for the horizontal velocity field, the vertical component, and the pressure field being determined a posteriori. Colinge and Rappaz first demonstrated the well-posedness of this problem and proved the convergence of the finite element approximation with piecewise linear continuous functions in [3]. Inspired by the work of Baranger/Najib [4] and Barrett/Liu [5] on non-Newtonian problems, a priori and a posteriori error estimates were obtained later in [6โ€“8].

Unlike the first-order approximation, the original Stokes model which is considered in this paper is a saddle point problem for the velocity and the pressure fields. We prove the existence and the uniqueness of a weak solution using an equivalent minimisation problem and an inf-sup stability condition. Next, we establish a priori estimates for a finite element approximation using a quasinorm technique [5]. Eventually, we investigate several successive approximation algorithms to solve the system nonlinearity. In particular, we upgrade by using Newton's method the fixed point algorithm, given in [3] and proved to be convergent in [6, 9].

Boundary conditions describe the basal sliding phenomena that can significantly influence the glacier ice flows. In [3, 6โ€“8], the first order approximation model was coupled to a Dirichlet condition. However, this approach requires the basal velocity distribution which is unknown. To overcome this difficulty, several sliding lawsโ€”including a Coulomb-type lawโ€”were considered in [10]. In our model, we use a sliding law that results in a nonlinear Dirichlet-Robin boundary condition.

This paper is organised as follows: the physical model is presented in Section 2. We prove the well-posedness of the weak problem in Section 3. In Section 4, we apply a finite element method and establish a priori error estimates. Successive approximation algorithms to solve the system nonlinearity are proposed and proved to be convergent in Section 5. In Section 6, convergence studies are performed to support the results of Sections 4 and 5.

2. The Model

Let us suppose that ice occupies the domain ฮฉโŠ‚โ„๐‘‘, with ๐‘‘=2 or 3. Ice can be considered as an incompressible non-Newtonian fluid with negligible inertial effects [11]. It follows that the velocity ๐ฎ and the pressure ๐‘ of ice solve the stationary nonlinear Stokes problem in ฮฉ: โˆ’2div(๐œ‡๐œ€(๐ฎ))+โˆ‡๐‘=๐Ÿ,div(๐ฎ)=0,(2.1) where ๐œ€(๐ฎ)=(1/2)(โˆ‡๐ฎ+โˆ‡๐ฎ๐‘‡) denotes the rate of strain tensor, ๐œ‡ the viscosity of ice, and ๐Ÿ the gravity force. Here above, the viscosity ๐œ‡ depends on |๐œ€(๐ฎ)|โˆถ=โˆš๐œ€(๐ฎ)โˆถ๐œ€(๐ฎ) and is defined by the regularised Glen's flow law [11]. More precisely, for a given velocity field ๐ฎ, the viscosity ๐œ‡ satisfies the following nonlinear equation: 12๐œ‡=๐ด๎‚€๐œ๐‘›โˆ’10+๎‚€โˆš2๐œ‡๐‘ ๎‚๐‘›โˆ’1๎‚,(2.2) where ๐‘ =|๐œ€(๐ฎ)|, ๐ด is a positive parameter, ๐‘›โ‰ฅ1 is Glen's exponent, and ๐œ0>0 is a small regularization parameter which prevents infinite viscosity for zero strain (๐œ0=0 in the original Glen's law [1]). When ๐‘›=1, then the viscosity ๐œ‡ is constant and (2.1) correspond to the classical linear Stokes problem related to a Newtonian fluid. In the framework of glaciology, ๐‘› is often taken equal to 3; see [12].

Let us set the boundary conditions for the system of (2.1). Three mechanical circumstances may occur at the boundary of a glacier: (i) no force applies on the ice-air interface; (ii) ice slides on the bedrock-ice interface; (iii) ice is stuck to the bedrock-ice interface. The boundary of ฮฉ is thus split into three parts: ฮ“๐‘, ฮ“๐‘…, and ฮ“๐ท, referring to circumstances (i), (ii), and (iii), respectively. We assume throughout that ฮฉ is bounded, its boundaries ฮ“๐‘ and ฮ“๐‘…, are ๐’ž1 and ฮ“๐ทโ‰ โˆ…. We consider the free surface condition: 2๐œ‡๐œ€(๐ฎ)โ‹…๐งโˆ’๐‘๐ง=๐ŸŽ,onฮ“๐‘,(2.3) where ๐ง is the unit outward normal vector along the boundary of the domain ฮฉ. We apply the nonlinear sliding condition [10, 13, 14]: ๐ฎโ‹…๐ง=0,(2๐œ‡๐œ€(๐ฎ)โ‹…๐ง)โ‹…๐ญ๐‘–=โˆ’๐›ผ๐ฎโ‹…๐ญ๐‘–,๐‘–=1,๐‘‘โˆ’1onฮ“๐‘…,(2.4) where {๐ญ๐‘–}๐‘–=1,๐‘‘โˆ’1 are the orthogonal vectors tangent to the boundary ฮ“๐‘…, that is, ๐ญ1 when ๐‘‘=2 and ๐ญ1,๐ญ2 when ๐‘‘=3. Here above, ๐›ผ=๐›ผ(|๐ฎ|) is the sliding coefficient that is given by ๐›ผ(๐‘ก)=๐‘๎€ท๐‘ก+๐‘ก0๎€ธ1/๐‘›โˆ’1,(2.5) where ๐‘ก=|๐ฎ| is the Euclidean norm of ๐ฎ, ๐‘› is Glen's exponent, ๐‘ is a positive parameter, and ๐‘ก0>0 is a small parameter which prevents infinite ๐›ผ for zero velocity. The no-sliding condition writes ๐ฎ=๐ŸŽ,onฮ“๐ท.(2.6)

Note that the conditions applied on boundaries ฮ“๐‘, ฮ“๐‘…, and ฮ“๐ท are Neumann, Robin-Dirichlet, and Dirichlet conditions, respectively. When ๐‘›=1 (Newtonian flow) and ฮ“๐‘…=โˆ…, the problem (2.1) with boundary conditions (2.3), (2.6) has already been widely studied; see, for instance, [15โ€“17].

3. Existence and Uniqueness

In this section, we prove that there exists a unique weak solution to problem (2.1) with mixed boundary conditions (2.3), (2.4), and (2.6). Pressure is first eliminated from the system by restricting the velocity space to divergence-free fields. Afterwards, the reduced problem is transformed into a minimisation problem. Following [3, 8], its well-posedness is proved by using convex analysis arguments. The existence and the uniqueness of the pressure field are ensured by an inf-sup condition. We now state in the next lemma several properties of the function ๐œ‡ that will often be used in Sections 3, 4 and 5.

Lemma 3.1. For all ๐‘ โˆˆโ„+, there exists a unique ๐œ‡=๐œ‡(๐‘ )โˆˆโ„+ satisfying (2.2). The function ๐‘ โ†’๐œ‡(๐‘ ) is ๐’žโˆž(0,+โˆž) and decreasing. There exist ๐ท1,๐ท2,๐ท3,๐ท4>0 such that: ๐ท1(1+๐‘ +๐‘ก)1โˆ’1/๐‘›(๐‘ โˆ’๐‘ก)โ‰ค๐‘ ๐œ‡(๐‘ )โˆ’๐‘ก๐œ‡(๐‘ก)โ‰ค๐ท2(1+๐‘ +๐‘ก)1โˆ’(1/๐‘›)(๐‘ โˆ’๐‘ก),โˆ€๐‘ โ‰ฅ๐‘กโ‰ฅ0,(3.1)๐ท1(1+๐‘ )1โˆ’1/๐‘›โ‰ค๐œ‡(๐‘ )โ‰ค๐ท2(1+๐‘ )1โˆ’1/๐‘›,โˆ€๐‘ โ‰ฅ0,(3.2)1๐‘›๐œ‡(๐‘ )โ‰ค๐œ‡(๐‘ )+๐‘ ๐œ‡๎…ž(๐‘ ),โˆ€๐‘ >0,(3.3)๎€ท๐œ‡๎€ท||๐œ‰||๎€ธ๐œ‰โˆ’๐œ‡๎€ท||๐œ‚||๎€ธ๐œ‚๎€ธโˆถ(๐œ‰โˆ’๐œ‚)โ‰ฅ๐ท3๎€ท1+||๐œ‰||+||๐œ‰โˆ’๐œ‚||๎€ธ(1/๐‘›โˆ’1)||๐œ‰โˆ’๐œ‚||2,โˆ€๐œ‰,๐œ‚โˆˆโ„๐‘‘ร—๐‘‘,(3.4)||๐œ‡๎€ท||๐œ‰||๎€ธ๐œ‰โˆ’๐œ‡๎€ท||๐œ‚||๎€ธ๐œ‚||โ‰ค๐ท4๎€ท1+||๐œ‰||+||๐œ‰โˆ’๐œ‚||๎€ธ(1/๐‘›โˆ’1)||๐œ‰โˆ’๐œ‚||,โˆ€๐œ‰,๐œ‚โˆˆโ„๐‘‘ร—๐‘‘.(3.5)

Proof. The properties of ๐œ‡ and inequalities (3.1) and (3.2) can be easily deduced from Lemmasโ€‰โ€‰1 and 2 of [7]. Inequality (3.3) is obtained by differentiating (2.2) with respect to ๐‘ . Inequalities (3.4) and (3.5) result from inequality (3.1), Lemmaโ€‰โ€‰2.1 in [5] and inequality (1/2)(|๐œ‰|+|๐œ‚|)โ‰ค|๐œ‰|+|๐œ‰โˆ’๐œ‚|โ‰ค2(|๐œ‰|+|๐œ‚|). Details are given in [12].

Let us notice that property (3.1) was introduced by Barrett and Liu (see [5]) in order to obtain a priori error estimates of a similar problem to the one treated in this paper. Define the Banach spaces: ๐‘‰โˆถ=๎‚†๐ฏโˆˆ๎€บ๐‘Š1,๐‘Ÿ(ฮฉ)๎€ป๐‘‘,๐ฏ=๐ŸŽonฮ“๐ท,๐ฏโ‹…๐ง=0onฮ“๐‘…๎‚‡,๐‘„โˆถ=๐ฟ๐‘Ÿ๎…ž(ฮฉ),(3.6) where ๐‘Ÿโˆถ=1+1๐‘›,๐‘Ÿโ€ฒโˆถ=๐‘›+1(3.7) are conjugate exponents and ๐‘› is Glen's exponent. By using (3.2), we have ๐œ‡(๐‘ )๐‘ โ‰ค๐ถ๐‘ ๐‘Ÿโˆ’1 for all ๐‘ >0. Then, if ๐ฎโˆˆ๐‘‰, we have ๐œ‡(|๐œ€(๐ฎ)|)๐œ€(๐ฎ)โˆˆ[๐ฟ๐‘Ÿ๎…ž(ฮฉ)]๐‘‘ร—๐‘‘. By using the trace inequality โ€–๐ฏโ€–๐ฟ๐‘Ÿ(ฮ“๐‘…)โ‰คโ€–๐ฏโ€–๐‘Š1โˆ’1/๐‘Ÿ,๐‘Ÿ(ฮ“๐‘…)โ‰ค๐ถโ€–๐ฏโ€–๐‘Š1,๐‘Ÿ(ฮฉ) for all ๐ฏโˆˆ[๐‘Š1,๐‘Ÿ(ฮฉ)]๐‘‘, see [19 page 197], we obtain (๐ฎโ‹…๐ญ๐‘–)โˆˆ๐ฟ๐‘Ÿ(ฮ“๐‘…),๐‘–=1,๐‘‘โˆ’1. Similarly, we can show ๐›ผ(|๐ฎ|)(๐ฎโ‹…๐ญ๐‘–)โˆˆ๐ฟ๐‘Ÿ๎…ž(ฮ“๐‘…),๐‘–=1,๐‘‘โˆ’1. Owing to Hรถlder's inequality, the mixed formulation of problem (2.1) with boundary conditions (2.3), (2.4), and (2.6) that consists of finding (๐ฎ,๐‘)โˆˆ๐‘‰ร—๐‘„ such that 2๎€œฮฉ๐œ‡๎€ท||๐œ€(๐ฎ)||๎€ธ๐œ€(๐ฎ)โˆถ๐œ€(๐ฏ)๐‘‘๐‘‰+๎“๐‘–=1,๐‘‘โˆ’1๎€œฮ“๐‘…๐›ผ(|๐ฎ|)๎€ท๐ฎโ‹…๐ญ๐‘–๎€ธ๎€ท๐ฏโ‹…๐ญ๐‘–๎€ธ๐‘‘๐‘†,โˆ’๎€œฮฉ๐‘div(๐ฏ)๐‘‘๐‘‰+๎€œฮฉ๐‘ždiv(๐ฎ)๐‘‘๐‘‰=๎€œฮฉ๐ โ‹…๐ฏ๐‘‘๐‘‰,โˆ€(๐ฏ,๐‘ž)โˆˆ๐‘‰ร—๐‘„(3.8) is meaningful.

Remark 3.2. If ฮ“๐‘=โˆ…, pressure ๐‘ in (3.8) is defined up to a constant. In that case, ๐‘„=๐ฟ๐‘Ÿ๎…ž is replaced by ๐‘„=๐ฟ๐‘Ÿ๎…ž0={๐‘žโˆˆ๐ฟ๐‘Ÿ๎…ž,โˆซฮฉ๐‘ž๐‘‘๐‘‰=0}. Moreover, if ๐‘›=1, then ๐‘Ÿ=2 and ๐œ‡ is constant and if ฮ“๐‘…=โˆ…, then the (linear) problem (3.8) is well posed; see, for instance, [15โ€“17].

The next lemma states the equivalence of norms โ€–|๐œ€(โ‹…)|โ€–๐ฟ๐‘Ÿ and โ€–โ‹…โ€–๐‘Š1,๐‘Ÿ on space ๐‘‰.

Lemma 3.3 (Korn's inequality). If ฮ“๐ทโ‰ โˆ… and if 1<๐›พ<โˆž, then there exists a constant ๐ถ>0 such that โ€–๐ฏโ€–๐‘Š1,๐›พโ‰ค๐ถโ€–โ€–||๐œ€(๐ฏ)||โ€–โ€–๐ฟ๐›พ,(3.9) for all ๐ฏโˆˆ๐‘Š1,๐›พ(ฮฉ) such that ๐ฏ=๐ŸŽ on ฮ“๐ท.

Proof. We apply Corollaryโ€‰โ€‰4.1 in [18] (๐น being the identity matrix) and Lemmaโ€‰โ€‰3.1 page 40 in [16].

We consider the divergence-free velocity space: ๐‘‰divโˆถ=๎‚†๐ฏโˆˆ๎€บ๐‘Š1,๐‘Ÿ(ฮฉ)๎€ป๐‘‘,div(๐ฏ)=0,๐ฏ=๐ŸŽonฮ“๐ท,๐ฏโ‹…๐ง=0onฮ“๐‘…๎‚‡.(3.10)

In ๐‘‰div, the pressure field ๐‘ vanishes of the variational formulation (3.8). The reduced formulation consists then of finding ๐ฎโˆˆ๐‘‰div such that 2๎€œฮฉ๐œ‡๎€ท||๐œ€(๐ฎ)||๎€ธ๐œ€(๐ฎ)โˆถ๐œ€(๐ฏ)๐‘‘๐‘‰+๎“๐‘–=1,๐‘‘โˆ’1๎€œฮ“๐‘…๐›ผ(|๐ฎ|)๎€ท๐ฎโ‹…๐ญ๐‘–๎€ธ๎€ท๐ฏโ‹…๐ญ๐‘–๎€ธ๐‘‘๐‘†=๎€œฮฉ๐ โ‹…๐ฏ๐‘‘๐‘‰,โˆ€๐ฏโˆˆ๐‘‰div.(3.11) To transform problem (3.11) into a minimisation problem, we introduce the functional ๐ฝ(๐ฎ)โˆถ=๎€œฮฉ๐‘€๎€ท||๐œ€(๐ฎ)||๎€ธ๐‘‘๐‘‰+12๎€œฮ“๐‘…๐‘(|๐ฎ|)๐‘‘๐‘†โˆ’๎€œฮฉ๐ฎโ‹…๐Ÿ๐‘‘๐‘‰,(3.12) where ๐‘€(๐‘ฅ)โˆถ=๎€œ๐‘ฅ0๐‘ ๐œ‡(๐‘ )๐‘‘๐‘ ,๐‘(๐‘ฅ)โˆถ=๎€œ๐‘ฅ0๐‘ก๐›ผ(๐‘ก)๐‘‘๐‘ก.(3.13) The functional ๐ฝ is Gรขteaux differentiable, and its first derivative ๐ท๐ฝ, at point ๐ฎโˆˆ๐‘‰div, in direction ๐ฏโˆˆ๐‘‰div, is given by โŸจ๐ท๐ฝ(๐ฎ),๐ฏโŸฉ=2๎€œฮฉ๐œ‡๎€ท||๐œ€(๐ฎ)||๎€ธ๐œ€(๐ฎ)โˆถ๐œ€(๐ฏ)๐‘‘๐‘‰+๎“๐‘–=1,๐‘‘โˆ’1๎€œฮ“๐‘…๐›ผ(|๐ฎ|)๎€ท๐ฎโ‹…๐ญ๐‘–๎€ธ๎€ท๐ฏโ‹…๐ญ๐‘–๎€ธ๐‘‘๐‘†โˆ’๎€œฮฉ๐ โ‹…๐ฏ๐‘‘๐‘‰.(3.14) Clearly, any minimiser of ๐ฝ in ๐‘‰div satisfies (3.11). We now establish several lemmas that allow us to prove the existence and the uniqueness of this minimiser in Theorem 3.8. We show the continuity of ๐ฝ in Lemma 3.5, the strict convexity of ๐ฝ in Lemma 3.6, and the coercivity (in the sense of (3.18)) of ๐ฝ in Lemma 3.7. The continuity of ๐ฝ requires the following result (Lemmaโ€‰โ€‰4 in [3])

Lemma 3.4. Let ๐‘‚ be a measurable set of โ„๐‘‘ and ๐‘“,๐‘”โˆˆ๐ฟ๐‘Ÿ(๐‘‚), then one has the following inequality: ๎€œ๐‘‚||||๐‘“||๐‘Ÿโˆ’||๐‘”||๐‘Ÿ||๐‘‘๐‘‰โ‰ค๐‘Ÿโ€–โ€–||๐‘“||+||๐‘”||โ€–โ€–๐‘Ÿโˆ’1๐ฟ๐‘Ÿ(๐‘‚)โ€–๐‘“โˆ’๐‘”โ€–๐ฟ๐‘Ÿ(๐‘‚).(3.15)

Lemma 3.5. The functional ๐ฝ is โ€–โ‹…โ€–๐‘Š1,๐‘Ÿ-continuous.

Proof. By using (3.2), (2.5), and 1โˆ’1/๐‘›=2โˆ’๐‘Ÿ, we have, for all ๐ฎ,๐ฏโˆˆ๐‘‰div||๐‘€๎€ท||๐œ€(๐ฎ)||๎€ธโˆ’๐‘€๎€ท||๐œ€(๐ฏ)||๎€ธ||=||||๎€œ|๐œ€(๐ฎ)|||๐œ€(๐ฏ)||๐‘ ๐œ‡(๐‘ )๐‘‘๐‘ ||||โ‰ค||||๐ท1๎€œ|๐œ€(๐ฎ)|||๐œ€(๐ฏ)||๐‘ ๐‘Ÿโˆ’1๐‘‘๐‘ ||||=๐ท1||||||๐œ€(๐ฎ)||๐‘Ÿโˆ’||๐œ€(๐ฏ)||๐‘Ÿ๐‘Ÿ||||,||๐‘(|๐ฎ|)โˆ’๐‘(|๐ฏ|)||=||||๎€œ|๐ฎ||๐ฏ|๐‘ก๐›ผ(๐‘ก)๐‘‘๐‘ก||||โ‰ค||||๐‘๎€œ|๐ฎ||๐ฏ|๐‘ก๐‘Ÿโˆ’1๐‘‘๐‘ก||||=๐‘|||||๐ฎ|๐‘Ÿโˆ’|๐ฏ|๐‘Ÿ๐‘Ÿ||||.(3.16) These two inequalities together with Lemma 3.4 imply the โ€–โ‹…โ€–๐‘Š1,๐‘Ÿ-continuity of ๐ฝ.

Lemma 3.6. The functional ๐ฝ is strictly convex on ๐‘‰.

Proof. Clearly, ๐‘€โ€ฒ(๐‘ )=๐‘ ๐œ‡(๐‘ ) and ๐‘€๎…ž๎…ž(๐‘ )=๐‘ ๐œ‡โ€ฒ(๐‘ )+๐œ‡(๐‘ ). From (3.3), we have ๐‘€๎…ž๎…ž(๐‘ )=๐‘ ๐œ‡โ€ฒ(๐‘ )+๐œ‡(๐‘ )โ‰ฅ(1/๐‘›)๐œ‡(๐‘ )>0 if ๐‘ >0, and then ๐‘€ is strictly convex. Since ๐‘€ is an increasing function, ๐‘€(|โ‹…|) is strictly convex. In the same way, we can show that ๐‘(|โ‹…|) is strictly convex by using (2.5). Let ๐ฎ,๐ฏโˆˆ๐‘‰div satisfying ๐ฎโ‰ ๐ฏ and ๐œƒโˆˆ(0,1). From Korn's inequality (Lemma 3.3), we have ๐œ€(๐ฎ)โ‰ ๐œ€(๐ฏ) in ๐ฟ๐‘Ÿ. As a consequence, ๎€œฮฉ๐‘€๎€ท||๐œƒ๐œ€(๐ฎ)+(1โˆ’๐œƒ)๐œ€(๐ฏ)||๎€ธ๐‘‘๐‘‰<๐œƒ๎€œฮฉ๐‘€๎€ท||๐œ€(๐ฎ)||๎€ธ๐‘‘๐‘‰+(1โˆ’๐œƒ)๎€œฮฉ๐‘€๎€ท||๐œ€(๐ฏ)||๎€ธ๐‘‘๐‘‰.(3.17) The strict convexity of ๐ฝ follows from the previous inequality and the convexity of ๐‘(|โ‹…|).

Since ๐ฝ is convex, ๐ฎโˆˆ๐‘‰div satisfies (3.11) if and only if ๐ฝ(๐ฎ)โ‰ค๐ฝ(๐ฏ),โˆ€๐ฏโˆˆ๐‘‰div.

Lemma 3.7. There exist two constants ๐ท1,๐ท2>0 such that, for all ๐ฎโˆˆ๐‘‰, ๐ฝ(๐ฎ)โ‰ฅ๐ท1โ€–๐ฎโ€–๐‘Ÿ๐‘Š1,๐‘Ÿโˆ’๐ท2.(3.18)

Proof. Let ๐ฎโˆˆ๐‘‰. From (3.2) and 1โˆ’1/๐‘›=2โˆ’๐‘Ÿ, there exists ๐ถ0>0 such that ๐‘€๎€ท||๐œ€(๐ฎ)||๎€ธโ‰ฅ๎€œ|๐œ€(๐ฎ)|0๐ถ0๐‘ (1+๐‘ )2โˆ’๐‘Ÿ๐‘‘๐‘ =๎€œ|๐œ€(๐ฎ)|2/20๐ถ0๎‚€1+โˆš2๐‘ก๎‚2โˆ’๐‘Ÿ๐‘‘๐‘กโ‰ฅ||๐œ€(๐ฎ)||22๐ถ0๎€ท1+||๐œ€(๐ฎ)||๎€ธ๐‘Ÿโˆ’2.(3.19) As a consequence, there exist two constants ๐ถ1,๐ถ2>0 such that ๐‘€(|๐œ€(๐ฎ)|)โ‰ฅ๐ถ1(1+|๐œ€(๐ฎ)|)๐‘Ÿโˆ’๐ถ2. By using Korn's inequality (Lemma 3.3), there exists ๐ถ3>0 such that ๎€œฮฉ๐‘€๎€ท||๐œ€(๐ฎ)||๎€ธ๐‘‘๐‘‰โ‰ฅ๐ถ3โ€–๐ฎโ€–๐‘Ÿ๐‘Š1,๐‘Ÿโˆ’๐ถ2๎€œฮฉ๐‘‘๐‘‰.(3.20) From Young's inequality, we have, for all ๐›ฟ>0, ๎€œฮฉ||๐ฎโ‹…๐Ÿ||๐‘‘๐‘‰โ‰ค๎€œฮฉ๎‚ต1๐‘Ÿโ€ฒ๐›ฟ๐‘Ÿ๎…ž||๐Ÿ||๐‘Ÿ๎…ž+๐›ฟ๐‘Ÿ๐‘Ÿ|๐ฎ|๐‘Ÿ๎‚ถ๐‘‘๐‘‰=๐ถ4๐›ฟ๐‘Ÿ๎…ž๎€œฮฉ๐‘‘๐‘‰+๐ถ5๐›ฟ๐‘Ÿโ€–๐ฎโ€–๐‘Ÿ๐ฟ๐‘Ÿ,(3.21) where ๐ถ4,๐ถ5>0. We set ๐›ฟ small enough such that ๐ถ3โˆ’๐›ฟ๐‘Ÿ๐ถ5>0. From inequalities (3.20), (3.21), and ๐‘โ‰ฅ0, we obtain ๐ฝ(๐ฎ)=๎€œฮฉ๎€ท๐‘€๎€ท||๐œ€(๐ฎ)||๎€ธโˆ’๐ฎโ‹…๐Ÿ๎€ธ๐‘‘๐‘‰+๎€œฮ“๐‘…12๐‘(|๐ฎ|)๐‘‘๐‘†โ‰ฅ๐ถ3โ€–๐ฎโ€–๐‘Ÿ๐‘Š1,๐‘Ÿโˆ’๐ถ2๎€œฮฉ๐‘‘๐‘‰โˆ’๐ถ4๐›ฟ๐‘Ÿ๎…ž๎€œฮฉ๐‘‘๐‘‰โˆ’๐ถ5๐›ฟ๐‘Ÿโ€–๐ฎโ€–๐‘Ÿ๐‘Š1,๐‘Ÿ,(3.22) which is exactly (3.18) with ๐ท1โˆถ=๐ถ3โˆ’๐ถ5๐›ฟ๐‘Ÿ and ๐ท2โˆถ=(๐ถ2+๐ถ4/๐›ฟ๐‘Ÿ๎…ž)โˆซฮฉ๐‘‘๐‘‰.

Theorem 3.8. There exists a unique ๐ฎโˆˆ๐‘‰div such that ๐ฝ(๐ฎ)=inf{๐ฝ(๐ฏ);๐ฏโˆˆ๐‘‰div}. Moreover, ๐ฎ is the unique solution of (3.11).

Proof. Clearly, there exists ๐ฎโˆˆ๐‘‰div such that ๐ฝ(๐ฎ)<+โˆž. Lemma 3.7 ensures the existence of ๐‘š=inf{๐ฝ(๐ฏ);๐ฏโˆˆ๐‘‰div}. Let {๐ฎ๐œˆ} be a sequence of ๐‘‰div such that lim๐œˆโ†’โˆž๐ฝ(๐ฎ๐œˆ)=๐‘š. There exists an integer ๐พ such that, for all ๐œˆ>๐พ, we have ๐‘š+1>๐ฝ(๐ฎ๐œˆ). Owing to Lemma 3.7, the sequence {๐ฎ๐œˆ} is bounded in ๐‘‰div. Since ๐‘‰div is a closed subspace of ๐‘‰, ๐‘‰div is reflexive. Consequently, there exist ๐ฎโˆˆ๐‘‰div and a subsequence of {๐ฎ๐œˆ} (still denoted {๐ฎ๐œˆ}) that converges weakly to ๐ฎ in ๐‘‰div. By Lemmas 3.5 and 3.6, ๐ฝ is weakly lower semicontinuous; see, for instance, Corollary III.8 in [19] page 38. Then, we have ๐‘š=liminf๐œˆโ†’+โˆž๐ฝ๎€ท๐ฎ๐œˆ๎€ธโ‰ฅ๐ฝ(๐ฎ)โ‰ฅ๐‘š,(3.23) and ๐ฝ possesses at least one minimum ๐ฎโˆˆ๐‘‰div. Since ๐ฝ is strictly convex (Lemma 3.6), this minimum is unique. Moreover, ๐ฎ is the unique solution of (3.11).

Spaces ๐‘‰ and ๐‘„ are required to satisfy the inf-sup condition, see [5, 20], to ensure the existence and the uniqueness of ๐‘โˆˆ๐‘„ such that (๐ฎ,๐‘) satisfies the mixed formulation (3.8). The inf-sup condition is proved in [15, 21] when ฮ“๐ท=๐œ•ฮฉ (or, equivalently, ฮ“๐‘=ฮ“๐‘…=โˆ…). By following the proof of Propositionโ€‰โ€‰5.3.2 in [22], we can easily generalise this result when ฮ“๐‘…โˆชฮ“๐‘โ‰ โˆ…; see details in [12].

Lemma 3.9. Spaces ๐‘‰ and ๐‘„ satisfy the inf-sup condition; that is, there exists ๐ถ>0 such that ๐ถ<inf๐‘žโˆˆ๐‘„sup๐ฏโˆˆ๐‘‰โˆซฮฉ๐‘ždiv(๐ฏ)๐‘‘๐‘‰โ€–๐‘žโ€–๐ฟ๐‘Ÿ๎…žโ€–๐ฏโ€–๐‘Š1,๐‘Ÿ.(3.24)

Theorem 3.10. There exists a unique couple (๐ฎ,๐‘)โˆˆ(๐‘‰,๐‘„) satisfying (3.8).

Proof. Although the result is a straightforward application of Theoremโ€‰โ€‰2.1 in [20] together with Theorem 3.8 and Lemma 3.9, we give all the arguments of the proof. Let ๐ดโˆถ๐‘‰โ†’๐‘‰โ€ฒ and ๐ตโˆถ๐‘‰โ†’๐‘„โ€ฒ be the operators defined by โŸจ๐ด๐ฎ,๐ฏโŸฉ=2๎€œฮฉ๐œ‡๎€ท||๐œ€(๐ฎ)||๎€ธ๐œ€(๐ฎ)โˆถ๐œ€(๐ฏ)๐‘‘๐‘‰+๎“๐‘–=1,๐‘‘โˆ’1๎€œฮ“๐‘…๐›ผ(|๐ฎ|)๎€ท๐ฎโ‹…๐ญ๐‘–๎€ธ๎€ท๐ฏโ‹…๐ญ๐‘–๎€ธ๐‘‘๐‘†,โˆ€๐‘ฃโˆˆ๐‘‰,โŸจ๐ต๐ฎ,๐‘žโŸฉ=๎€œฮฉ๐‘ždiv๐ฎ๐‘‘๐‘‰,โˆ€๐‘žโˆˆ๐‘„,(3.25) where ๐‘‰โ€ฒ and ๐‘„โ€ฒ are dual to ๐‘‰ and ๐‘„, respectively. From Theorem 3.8, there exists a unique ๐ฎโˆˆker๐ต such that โŸจ๐ด๐ฎโˆ’๐Ÿ,๐ฏโŸฉ=0 for all ๐ฏโˆˆker๐ต, which means that ๐ด๐ฎโˆ’๐Ÿโˆˆ(ker๐ต)โŸ‚. Owing to the inf-sup condition (4.1), the operator ๐ตโˆถ๐‘‰โ†’๐‘„โ€ฒ is surjective, ker๐ต๐‘‡=โˆ…, and โ„›(๐ต๐‘‡) is closed; see Lemmaโ€‰โ€‰A.40 in [15]. As a consequence, ๐ด๐ฎโˆ’๐Ÿโˆˆ(ker๐ต)โŸ‚=โ„›(๐ต๐‘‡)=โ„›(๐ต๐‘‡) and there exists ๐‘โˆˆ๐‘„ such that ๐ด๐ฎโˆ’๐Ÿ=๐ต๐‘‡๐‘. Since ker๐ต๐‘‡=โˆ…, the pressure ๐‘ is necessarily unique. Eventually, there exists a unique couple (๐ฎ,๐‘)โˆˆ๐‘‰ร—๐‘„ satisfying ๐ด๐ฎโˆ’๐ต๐‘‡๐‘=๐Ÿ,๐ต๐ฎ=0,(3.26) or equivalently (3.8).

4. Finite Element Approximation and A Priori Estimates

We assume that ฮฉ is a convex polygonal or polyhedral domain and ๐’ฏโ„Ž is a regular mesh of ฮฉ parametrized by โ„Ž, the highest diameter of the elements of ๐’ฏโ„Ž. We say that ๐‘‰โ„ŽโŠ‚๐‘‰ and ๐‘„โ„ŽโŠ‚๐‘„, some finite-dimensional approximation spaces on ๐’ฏโ„Ž of ๐‘‰ and ๐‘„, satisfy the inf-sup condition if, for all ๐œ…โˆˆ(1,โˆž), there exists a constant ๐ถโ„Ž>0 such that ๐ถโ„Ž<inf๐‘žโ„Žโˆˆ๐‘„โ„Žsup๐ฏโ„Žโˆˆ๐‘‰โ„Žโˆซฮฉ๐‘žโ„Ždiv๎€ท๐ฏโ„Ž๎€ธ๐‘‘๐‘‰โ€–โ€–๐‘žโ„Žโ€–โ€–๐ฟ๐œ…๎…žโ€–โ€–๐ฏโ„Žโ€–โ€–๐‘Š1,๐œ….(4.1) The discrete problem is obtained by replacing the spaces ๐‘‰ and ๐‘„ by ๐‘‰โ„Ž and ๐‘„โ„Ž, respectively. It consists of finding (๐ฎโ„Ž,๐‘โ„Ž)โˆˆ(๐‘‰โ„Ž,๐‘„โ„Ž) such that 2๎€œฮฉ๐œ‡๎‚€||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๎‚๐œ€๎€ท๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๐‘‘๐‘‰+๎“๐‘–=1,๐‘‘โˆ’1๎€œฮ“๐‘…๐›ผ๎€ท||๐ฎโ„Ž||๎€ธ๎€ท๐ฎโ„Žโ‹…๐ญ๐‘–๎€ธ๎€ท๐ฏโ„Žโ‹…๐ญ๐‘–๎€ธ๐‘‘๐‘†,โˆ’๎€œฮฉ๐‘โ„Ždiv๐ฏโ„Ž๐‘‘๐‘‰+๎€œฮฉ๐‘žโ„Ždiv๐ฎโ„Ž๐‘‘๐‘‰=๎€œฮฉ๐Ÿโ‹…๐ฏโ„Ž๐‘‘๐‘‰,โˆ€๎€ท๐ฏโ„Ž,๐‘žโ„Ž๎€ธโˆˆ๎€ท๐‘‰โ„Ž,๐‘„โ„Ž๎€ธ.(4.2) The discrete similar space to ๐‘‰div is ๐‘‰div,โ„Ž=๎‚ป๐ฏโ„Žโˆˆ๐‘‰โ„Ž;๎€œฮฉ๐‘žโ„Ždiv๎€ท๐ฏโ„Ž๎€ธ๐‘‘๐‘‰=0;โˆ€๐‘žโ„Žโˆˆ๐‘„โ„Ž๎‚ผ.(4.3) Note that ๐‘‰div,โ„Ž is not necessarily included in ๐‘‰div. The discrete reduced problem consists of finding ๐ฎโ„Žโˆˆ๐‘‰div,โ„Ž such that 2๎€œฮฉ๐œ‡๎‚€||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๎‚๐œ€๎€ท๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๐‘‘๐‘‰+๎“๐‘–=1,๐‘‘โˆ’1๎€œฮ“๐‘…๐›ผ๎€ท||๐ฎโ„Ž||๎€ธ๎€ท๐ฎโ„Žโ‹…๐ญ๐‘–๎€ธ๎€ท๐ฏโ„Žโ‹…๐ญ๐‘–๎€ธ๐‘‘๐‘†=๎€œฮฉ๐ โ‹…๐ฏโ„Ž๐‘‘๐‘‰,โˆ€๐ฏโ„Žโˆˆ๐‘‰div,โ„Ž.(4.4) Since ๐‘‰div,โ„Ž is a closed subspace of ๐‘‰, Theorem 3.8 and the proof can be rewritten by replacing ๐‘‰div by ๐‘‰div,โ„Ž.

Theorem 4.1. There exists a unique ๐ฎโ„Žโˆˆ๐‘‰div,โ„Ž such that ๐ฝ(๐ฎโ„Ž)=inf{๐ฝ(๐ฏโ„Ž);๐ฏโ„Žโˆˆ๐‘‰div,โ„Ž}. Moreover, ๐ฎโ„Ž is the unique solution of (4.4).

Remark 4.2. By setting ๐ฏโ„Ž=๐ฎโ„Ž in (4.4) and by using inequality (3.2), (2.5), and Korn's inequality (Lemma 3.3), we can show that the solution ๐ฎโ„Ž of problem (4.4) satisfies โ€–โ€–๐ฎโ„Žโ€–โ€–๐‘Š1,๐‘Ÿโ‰ค๐ถโ€–๐Ÿโ€–๐ฟ๐‘Ÿ๎…ž,(4.5) where ๐ถ>0 does not depend on ๐ฎโ„Ž.

From Theorem 4.1 and the inf-sup condition (4.1), we can rewrite Theorem 3.10 and its proof for the discrete mixed problem.

Theorem 4.3. If ๐‘‰โ„Ž and ๐‘„โ„Ž satisfy the inf-sup condition (4.1), then there exists a unique couple (๐ฎโ„Ž,๐‘โ„Ž)โˆˆ(๐‘‰โ„Ž,๐‘„โ„Ž) satisfying (4.2).

Remark 4.4. The spaces [โ„™1/Bulle]๐‘‘โˆ’โ„™1 and [โ„™2]๐‘‘โˆ’โ„™1 are two examples that satisfy the inf-sup condition (4.1) while โ„™1โˆ’โ„™1 does not satisfy (4.1); see [15].

The error analysis that follows is partly inspired from [5, 7]. We give a priori estimates for the numerical approximation of the stationary Stokes problem in Theorem 4.9. For the sake of simplicity, we suppose ฮ“๐‘…=โˆ…; that is, the boundary Robin-Dirichlet condition is not considered; see also Remark 4.11. The nonlinearity of problem (3.8) is treated by introducing (in Lemma 4.5) a quasi-norm that depends on the solution; see [5]. The orthogonality of the error (Lemma 4.6) together with properties (3.4) and (3.5) of the function ๐œ‡ allow quasi-norm estimates to be established in Theorem 4.7. The properties of the quasi-norm given in Lemma 4.5 allow estimates with standard norms to be proved in Theorem 4.8. Eventually, these estimates together with interpolation inequalities yield to the main Theorem 4.9.

Lemma 4.5. Let (๐ฎ,๐‘) be the solution of (3.8); the application ๐ฏโŸถโ€–|๐ฏ|โ€–โˆถ=๎„ถ๎„ต๎„ตโŽท๎€œฮฉ||๐œ€(๐ฏ)||2๎€ท1+||๐œ€(๐ฎ)||+||๐œ€(๐ฏ)||๎€ธ2โˆ’๐‘Ÿ๐‘‘๐‘‰(4.6) is a quasi-norm of ๐‘‰; that is, it satisfies all properties of norms, except homogeneity. Moreover, there exists ๐ท1>0 such that, for all ๐ฏโˆˆ๐‘Š1,๐‘Ÿ(ฮฉ), one has โ€–๐ฏโ€–2๐‘Š1,๐‘Ÿโ‰ค๐ท1๎€บ1+โ€–๐ฎโ€–๐‘Š1,๐‘Ÿ+โ€–๐ฏโ€–๐‘Š1,๐‘Ÿ๎€ป2โˆ’๐‘Ÿโ€–|๐ฏ|โ€–2,(4.7) and there exists ๐ท2>0 such that, for all ๐œ…โˆˆ[๐‘Ÿ,2] and for all ๐ฏโˆˆ๐‘Š1,๐œ…(ฮฉ), one has โ€–|๐ฏ|โ€–2โ‰ค๐ท2โ€–๐ฏโ€–๐œ…๐‘Š1,๐œ….(4.8)

Proof. The quasi-norm properties are shown in Lemmaโ€‰โ€‰3.1 in [5]. Inequalities (4.7) and (4.8) result from Korn and Hรถlder's inequalities; see details in [12].

By setting ๐ฏ=๐ฏโ„Žโˆˆ๐‘‰div,โ„Ž in (3.8) it is easy to prove the next lemma.

Lemma 4.6. Let (๐ฎ,๐‘)โˆˆ(๐‘‰,๐‘„) be the solution of problem (3.8) and ๐ฎโ„Žโˆˆ๐‘‰div,โ„Ž the solution of problem (4.4), then ๎€œฮฉ2๎‚€๐œ‡๎€ท||๐œ€(๐ฎ)||๎€ธ๐œ€(๐ฎ)โˆ’๐œ‡๎‚€||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๎‚๐œ€๎€ท๐ฎโ„Ž๎€ธ๎‚โˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๐‘‘๐‘‰โˆ’๎€œฮฉdiv๎€ท๐ฏโ„Ž๎€ธ๎€ท๐‘โˆ’๐‘žโ„Ž๎€ธ๐‘‘๐‘‰=0(4.9) holds for all (๐ฏโ„Ž,๐‘žโ„Ž)โˆˆ(๐‘‰div,โ„Ž,๐‘„โ„Ž). Moreover, if the spaces ๐‘‰โ„Ž and ๐‘„โ„Ž satisfy the inf-sup condition (4.1), then the solution (๐ฎโ„Ž,๐‘โ„Ž) of (4.2) satisfies ๎€œฮฉ2๎‚€๐œ‡๎€ท||๐œ€(๐ฎ)||๎€ธ๐œ€(๐ฎ)โˆ’๐œ‡๎‚€||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๎‚๐œ€๎€ท๐ฎโ„Ž๎€ธ๎‚โˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๐‘‘๐‘‰โˆ’๎€œฮฉdiv๎€ท๐ฏโ„Ž๎€ธ๎€ท๐‘โˆ’๐‘โ„Ž๎€ธ๐‘‘๐‘‰=0,(4.10) for all ๐ฏโ„Žโˆˆ๐‘‰โ„Ž.

Theorem 4.7. Let (๐ฎ,๐‘)โˆˆ(๐‘‰,๐‘„) be the solution of (3.8) and ๐ฎโ„Žโˆˆ๐‘‰div,โ„Ž the solution of (4.4). For all (๐ฏโ„Ž,๐‘žโ„Ž)โˆˆ๐‘‰div,โ„Žร—๐‘„โ„Ž, one has โ€–โ€–||๐ฎโˆ’๐ฎโ„Ž||โ€–โ€–โ‰ค๐ท1๎€บ1+โ€–โ€–๐ฎโ„Žโ€–โ€–๐‘Š1,๐‘Ÿ+โ€–โ€–๐ฏโ„Žโ€–โ€–๐‘Š1,๐‘Ÿ๎€ป(2โˆ’๐‘Ÿ)/2๎€ทโ€–โ€–||๐ฎโˆ’๐ฏโ„Ž||โ€–โ€–+โ€–โ€–๐‘โˆ’๐‘žโ„Žโ€–โ€–๐ฟ๐‘Ÿ๎…ž๎€ธ,(4.11) where ๐ท1>0. Moreover, if the spaces ๐‘‰โ„Ž and ๐‘„โ„Ž satisfy the inf-sup condition (4.1), then the solution (๐ฎโ„Ž,๐‘โ„Ž) of (4.2) satisfies, for all ๐œ…โˆˆ[๐‘Ÿ,2] and for all ๐‘žโ„Žโˆˆ๐‘„โ„Ž, โ€–โ€–๐‘โˆ’๐‘โ„Žโ€–โ€–๐ฟ๐œ…๎…žโ‰ค๐ท2๎‚€โ€–โ€–||๐ฎโˆ’๐ฎโ„Ž||โ€–โ€–2/๐œ…๎…ž+โ€–โ€–๐‘โˆ’๐‘žโ„Žโ€–โ€–๐ฟ๐œ…๎…ž๎‚,(4.12) where ๐ท2>0. The constants ๐ท1,๐ท2 do not depend on ๐ฎโ„Ž and ๐ฏโ„Ž; however, ๐ท2 increasingly depends on (๐ถโ„Ž)โˆ’1.

Proof. By using, respectively, the definition (4.6) of the quasi-norm |||โ‹…|||, inequality (3.4) with 1โˆ’1/๐‘›=2โˆ’๐‘Ÿ, and (4.9), there exists ๐ถ1>0 such that โ€–โ€–||๐ฎโˆ’๐ฎโ„Ž||โ€–โ€–2โ‰ค๐ถ1๎‚ป๎€œฮฉ2๎‚€๐œ‡๎€ท||๐œ€(๐ฎ)||๎€ธ๐œ€(๐ฎ)โˆ’๐œ‡๎‚€||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๎‚๐œ€๎€ท๐ฎโ„Ž๎€ธ๎‚โˆถ๐œ€๎€ท๐ฎโˆ’๐ฎโ„Ž๎€ธ๐‘‘๐‘‰๎‚ผ=๐ถ1โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ๎€œฮฉ2๎‚€๐œ‡๎€ท||๐œ€(๐ฎ)||๎€ธ๐œ€(๐ฎ)โˆ’๐œ‡๎‚€||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๎‚๐œ€๎€ท๐ฎโ„Ž๎€ธ๎‚โˆถ๐œ€๎€ท๐ฎโˆ’๐ฏโ„Ž๎€ธ๐‘‘๐‘‰๎„ฟ๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…ƒ๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…Œโˆถ=๐ด1+๎€œฮฉdiv๎€ท๐ฏโ„Žโˆ’๐ฎโ„Ž๎€ธ๎€ท๐‘โˆ’๐‘žโ„Ž๎€ธ๐‘‘๐‘‰๎„ฟ๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…ƒ๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…€๎…Œโˆถ=๐ด2โŽซโŽชโŽชโŽฌโŽชโŽชโŽญ,(4.13) where (๐ฏโ„Ž,๐‘žโ„Ž)โˆˆ๐‘‰div,โ„Žร—๐‘„โ„Ž. For the sake of simplicity, ๐ด1 and ๐ด2 are handled separately. By using inequality (3.5) with 1โˆ’1/๐‘›=2โˆ’๐‘Ÿ, there exists ๐ถ2>0 such that ||๐ด1||โ‰ค๎€œฮฉ2|||๐œ‡๎€ท||๐œ€(๐ฎ)||๎€ธ๐œ€(๐ฎ)โˆ’๐œ‡๎‚€||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๎‚๐œ€๎€ท๐ฎโ„Ž๎€ธ|||||๐œ€๎€ท๐ฎโˆ’๐ฏโ„Ž๎€ธ||๐‘‘๐‘‰โ‰ค๐ถ2๎€œฮฉ||๐œ€๎€ท๐ฎโˆ’๐ฎโ„Ž๎€ธ||||๐œ€๎€ท๐ฎโˆ’๐ฏโ„Ž๎€ธ||๎‚€1+||๐œ€(๐ฎ)||+||๐œ€๎€ท๐ฎโˆ’๐ฎโ„Ž๎€ธ||๎‚2โˆ’๐‘Ÿ๐‘‘๐‘‰.(4.14) By using the inequality (see Lemmaโ€‰โ€‰2.2 in [5] orโ€‰โ€‰(3.10) in [8]), (1+๐‘Ž+๐‘ก)โˆ’๐‘’๐‘ก๐‘ โ‰ค๐›ผ(1+๐‘Ž+๐‘ก)โˆ’๐‘’๐‘ก2+๐›ผโˆ’1(1+๐‘Ž+๐‘ )โˆ’๐‘’๐‘ 2,โˆ€๐‘Ž,๐‘ก,๐‘ โ‰ฅ0,โˆ€๐›ผโˆˆ(0,1],๐‘’โˆˆ(0,1),(4.15) with ๐‘Ž=|๐œ€(๐ฎ)|, ๐‘ก=|๐œ€(๐ฎโˆ’๐ฎโ„Ž)|, ๐‘ =|๐œ€(๐ฎโˆ’๐ฏโ„Ž)|, and ๐‘’=2โˆ’๐‘Ÿ, we obtain, for all ๐›ผโˆˆ[0,1], ||๐ด1||โ‰ค๐ถ2๎‚†๐›ผโ€–โ€–||๐ฎโˆ’๐ฎโ„Ž||โ€–โ€–2+๐›ผโˆ’1โ€–โ€–||๐ฎโˆ’๐ฏโ„Ž||โ€–โ€–2๎‚‡.(4.16) We now use respectively Hรถlder's inequality, Young's inequality, and (4.7); there exist ๐ถ3,๐ถ4,๐ถ5>0 such that ||๐ด2||โ‰คโ€–โ€–div๎€ท๐ฏโ„Žโˆ’๐ฎโ„Ž๎€ธโ€–โ€–๐ฟ๐‘Ÿโ€–โ€–๐‘โˆ’๐‘žโ„Žโ€–โ€–๐ฟ๐‘Ÿ๎…žโ‰ค12๐ถ3๐›ฝโ€–โ€–๐ฏโ„Žโˆ’๐ฎโ„Žโ€–โ€–2๐‘Š1,๐‘Ÿ+12๐›ฝโˆ’1โ€–โ€–๐‘โˆ’๐‘žโ„Žโ€–โ€–2๐ฟ๐‘Ÿ๎…žโ‰ค๐ถ4๐›ฝ๎€บ1+โ€–๐ฎโ€–๐‘Š1,๐‘Ÿ+โ€–โ€–๐ฏโ„Žโˆ’๐ฎโ„Žโ€–โ€–๐‘Š1,๐‘Ÿ๎€ป2โˆ’๐‘Ÿโ€–โ€–||๐ฏโ„Žโˆ’๐ฎโ„Ž||โ€–โ€–2+12๐›ฝโˆ’1โ€–โ€–๐‘โˆ’๐‘žโ„Žโ€–โ€–2๐ฟ๐‘Ÿ๎…žโ‰ค๐ถ5๐›ฝ๎€บ1+โ€–โ€–๐ฎโ„Žโ€–โ€–๐‘Š1,๐‘Ÿ+โ€–โ€–๐ฏโ„Žโ€–โ€–๐‘Š1,๐‘Ÿ๎€ป2โˆ’๐‘Ÿ๎‚€โ€–โ€–||๐ฎโˆ’๐ฎโ„Ž||โ€–โ€–2+โ€–โ€–||๐ฎโˆ’๐ฏโ„Ž||โ€–โ€–2๎‚+12๐›ฝโˆ’1โ€–โ€–๐‘โˆ’๐‘žโ„Žโ€–โ€–2๐ฟ๐‘Ÿ๎…ž.(4.17) By setting ๐›ผ=1/(4๐ถ2๐ถ1) and ๐›ฝ=1/(4๐ถ5๐ถ1[1+โ€–๐ฎโ„Žโ€–๐‘Š1,๐‘Ÿ+โ€–๐ฏโ„Žโ€–๐‘Š1,๐‘Ÿ]2โˆ’๐‘Ÿ), we obtain โ€–โ€–||๐ฎโˆ’๐ฎโ„Ž||โ€–โ€–2โ‰ค๐ถ1๎€ฝ||๐ด1||+||๐ด2||๎€พโ‰ค12โ€–โ€–||๐ฎโˆ’๐ฎโ„Ž||โ€–โ€–2+4๐ถ22๐ถ21โ€–โ€–||๐ฎโˆ’๐ฏโ„Ž||โ€–โ€–2+14โ€–โ€–||๐ฎโˆ’๐ฏโ„Ž||โ€–โ€–2+2๐ถ21๐ถ5๎€บ1+โ€–โ€–๐ฎโ„Žโ€–โ€–๐‘Š1,๐‘Ÿ+โ€–โ€–๐ฏโ„Žโ€–โ€–๐‘Š1,๐‘Ÿ๎€ป2โˆ’๐‘Ÿโ€–โ€–๐‘โˆ’๐‘žโ„Žโ€–โ€–2๐ฟ๐‘Ÿ๎…ž(ฮฉ).(4.18) By moving (1/2)|||๐ฎโˆ’๐ฎโ„Ž|||2 to the left-hand side, we obtain (4.11). From the inf-sup condition (4.1), we have, for all ๐‘žโ„Žโˆˆ๐‘„โ„Ž, ๐ถโ„Žโ€–โ€–๐‘žโ„Žโˆ’๐‘โ„Žโ€–โ€–๐ฟ๐œ…๎…ž<sup๐ฏโ„Žโˆˆ๐‘‰โ„Žโˆซฮฉ๎€ท๐‘žโ„Žโˆ’๐‘โ„Ž๎€ธdiv๎€ท๐ฏโ„Ž๎€ธ๐‘‘๐‘‰โ€–โ€–๐ฏโ„Žโ€–โ€–๐‘Š1,๐œ….(4.19) From (4.10), we have, for all ๐ฏโ„Žโˆˆ๐‘‰โ„Ž, ๎€œฮฉdiv๎€ท๐ฏโ„Ž๎€ธ๎€ท๐‘žโ„Žโˆ’๐‘โ„Ž๎€ธ๐‘‘๐‘‰=๎€œฮฉ2๎‚€๐œ‡๎€ท||๐œ€(๐ฎ)||๎€ธ๐œ€(๐ฎ)โˆ’๐œ‡๎‚€||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๎‚๐œ€๎€ท๐ฎโ„Ž๎€ธ๎‚โˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๐‘‘๐‘‰+๎€œฮฉdiv๎€ท๐ฏโ„Ž๎€ธ๎€ท๐‘žโ„Žโˆ’๐‘๎€ธ๐‘‘๐‘‰.(4.20) From (4.19), (4.20), and (3.5) with 1โˆ’1/๐‘›=2โˆ’๐‘Ÿ, there exist ๐ถ6,๐ถ7>0 such that ๐ถโ„Žโ€–โ€–๐‘žโ„Žโˆ’๐‘โ„Žโ€–โ€–๐ฟ๐œ…๎…ž<sup๐ฏโ„Žโˆˆ๐‘‰โ„Ž|||โˆซฮฉ2๎‚€๐œ‡๎€ท||๐œ€(๐ฎ)||๎€ธ๐œ€(๐ฎ)โˆ’๐œ‡๎‚€||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๎‚๐œ€๎€ท๐ฎโ„Ž๎€ธ๎‚โˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๐‘‘๐‘‰|||โ€–โ€–๐ฏโ„Žโ€–โ€–๐‘Š1,๐œ…+sup๐ฏโ„Žโˆˆ๐‘‰โ„Ž||โˆซฮฉdiv๎€ท๐ฏโ„Ž๎€ธ๎€ท๐‘žโ„Žโˆ’๐‘๎€ธ๐‘‘๐‘‰||โ€–โ€–๐ฏโ„Žโ€–โ€–๐‘Š1,๐œ…โ‰ค๐ถ6๎‚†โ€–โ€–2๎‚€๐œ‡๎€ท||๐œ€(๐ฎ)||๎€ธ๐œ€(๐ฎ)โˆ’๐œ‡๎‚€||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๎‚๐œ€๎€ท๐ฎโ„Ž๎€ธ๎‚โ€–โ€–๐ฟ๐œ…๎…ž+โ€–โ€–๐‘žโ„Žโˆ’๐‘โ€–โ€–๐ฟ๐œ…๎…ž๎‚‡โ‰ค๐ถ7๎‚ป๎€œฮฉ๎‚€1+||๐œ€(๐ฎ)||+||๐œ€๎€ท๐ฎโˆ’๐ฎโ„Ž๎€ธ||๎‚(๐‘Ÿโˆ’2)๐œ…๎…ž||๐œ€๎€ท๐ฎโˆ’๐ฎโ„Ž๎€ธ||๐œ…๎…ž๐‘‘๐‘‰๎‚ผ1/๐œ…๎…ž+๐ถ6โ€–โ€–๐‘žโ„Žโˆ’๐‘โ€–โ€–๐ฟ๐œ…๎…žโ‰ค๐ถ7๐ถ8๎‚ป๎€œฮฉ๎‚€1+||๐œ€(๐ฎ)||+||๐œ€๎€ท๐ฎโˆ’๐ฎโ„Ž๎€ธ||๎‚(๐‘Ÿโˆ’2)||๐œ€๎€ท๐ฎโˆ’๐ฎโ„Ž๎€ธ||2๐‘‘๐‘‰๎‚ผ1/๐œ…๎…ž+๐ถ6โ€–โ€–๐‘žโ„Žโˆ’๐‘โ€–โ€–๐ฟ๐œ…๎…žโ‰ค๐ถ7โ€–โ€–||๐ฎโˆ’๐ฎโ„Ž||โ€–โ€–2/๐œ…๎…ž+๐ถ6โ€–โ€–๐‘žโ„Žโˆ’๐‘โ€–โ€–๐ฟ๐œ…๎…ž,(4.21) where ๐ถ8โˆถ=โ€–(1+|๐œ€(๐ฎ)|+|๐œ€(๐ฎโˆ’๐ฎโ„Ž)|)(๐‘Ÿโˆ’2)|๐œ€(๐ฎโˆ’๐ฎโ„Ž)|2โˆ’๐œ…โ€–1/๐œ…๐ฟโˆž<1. Eventually, the previous inequality together with โ€–๐‘โˆ’๐‘โ„Žโ€–๐ฟ๐œ…๎…žโ‰คโ€–๐‘žโ„Žโˆ’๐‘โ„Žโ€–๐ฟ๐œ…๎…ž+โ€–๐‘โˆ’๐‘žโ„Žโ€–๐ฟ๐œ…๎…ž leads to (4.12).

Theorem 4.8. Let (๐ฎ,๐‘)โˆˆ(๐‘‰,๐‘„) be the solution of (3.8), and ๐ฎโ„Žโˆˆ๐‘‰div,โ„Ž the solution of (4.4). For all (๐ฏโ„Ž,๐‘žโ„Ž)โˆˆ๐‘‰div,โ„Žร—๐‘„โ„Ž and for all ๐œ…โˆˆ[๐‘Ÿ,2], assuming ๐ฎโˆˆ๐‘Š1,๐œ…(ฮฉ), one has โ€–โ€–๐ฎโˆ’๐ฎโ„Žโ€–โ€–๐‘Š1,๐‘Ÿโ‰ค๐ท1๎€บ1+โ€–โ€–๐ฎโ„Žโ€–โ€–๐‘Š1,๐‘Ÿ+โ€–โ€–๐ฏโ„Žโ€–โ€–๐‘Š1,๐‘Ÿ๎€ป2โˆ’๐‘Ÿ๎€ทโ€–โ€–๐ฎโˆ’๐ฏโ„Žโ€–โ€–๐œ…/2๐‘Š1,๐œ…+โ€–โ€–๐‘โˆ’๐‘žโ„Žโ€–โ€–๐ฟ๐‘Ÿ๎…ž๎€ธ,(4.22) where ๐ท1>0. Moreover, if the spaces ๐‘‰โ„Ž and ๐‘„โ„Ž satisfy the inf-sup condition (4.1), then the solution (๐ฎโ„Ž,๐‘โ„Ž) of (4.2) satisfies for all (๐ฏโ„Ž,๐‘žโ„Ž)โˆˆ๐‘‰โ„Žร—๐‘„โ„Ž and for all ๐œ…โˆˆ[๐‘Ÿ,2], assuming ๐ฎโˆˆ๐‘Š1,๐œ…(ฮฉ), โ€–โ€–๐ฎโˆ’๐ฎโ„Žโ€–โ€–๐‘Š1,๐‘Ÿโ‰ค๐ท2๎€บ1+โ€–โ€–๐ฎโ„Žโ€–โ€–๐‘Š1,๐‘Ÿ+โ€–โ€–๐ฏโ„Žโ€–โ€–๐‘Š1,๐‘Ÿ๎€ป2โˆ’๐‘Ÿ๎€ทโ€–โ€–๐ฎโˆ’๐ฏโ„Žโ€–โ€–๐œ…/2๐‘Š1,๐œ…+โ€–โ€–๐‘โˆ’๐‘žโ„Žโ€–โ€–๐ฟ๐‘Ÿ๎…ž๎€ธ,(4.23)โ€–โ€–๐‘โˆ’๐‘โ„Žโ€–โ€–๐ฟ๐œ…๎…žโ‰ค๐ท3๎€บ1+โ€–โ€–๐ฎโ„Žโ€–โ€–๐‘Š1,๐‘Ÿ+โ€–โ€–๐ฏโ„Žโ€–โ€–๐‘Š1,๐‘Ÿ๎€ป(2โˆ’๐‘Ÿ)/๐œ…๎…žร—๎‚†๎€ทโ€–โ€–๐ฎโˆ’๐ฏโ„Žโ€–โ€–๐œ…/2๐‘Š1,๐œ…+โ€–โ€–๐‘โˆ’๐‘žโ„Žโ€–โ€–๐ฟ๐‘Ÿ๎…ž๎€ธ2/๐œ…๎…ž+โ€–โ€–๐‘โˆ’๐‘žโ„Žโ€–โ€–๐ฟ๐œ…๎…ž๎‚‡,(4.24) where ๐ท2,๐ท3>0. The constants ๐ท1,๐ท2,๐ท3 do not depend on ๐ฎโ„Ž and ๐ฏโ„Ž; however, ๐ท2 and ๐ท3 increasingly depends on (๐ถโ„Ž)โˆ’1.

Proof. On one hand, inequality (4.22) follows from inequalities (4.7), (4.11), and (4.8). On the other hand, (4.23) follows from (4.22) and from the following property (see (1.16), page 115 in [16]): for all ๐ฏโˆˆ๐‘‰div and for all ๐ฐโ„Žโˆˆ๐‘‰โ„Ž, there exists ๐ฏโ„Žโˆˆ๐‘‰div,โ„Ž such that โ€–โ€–๐ฏโˆ’๐ฏโ„Žโ€–โ€–๐‘Š1,๐œ…โ‰ค๐ถโ€–โ€–๐ฏโˆ’๐ฐโ„Žโ€–โ€–๐‘Š1,๐œ…,(4.25) where ๐ถ depends on the inf-sup constant ๐ถโ„Ž. Eventually, (4.24) follows from (4.12), (4.11), and (4.8).

Theorem 4.9. Assume that, for all ๐œ…โˆˆ[๐‘Ÿ,2], there exists a continuous operator ๐œ‹โ„Žโˆถ[๐‘Š2,๐œ…]๐‘‘โ†’๐‘‰โ„Ž that satisfies โ€–โ€–๐ฎโˆ’๐œ‹โ„Ž(๐ฎ)โ€–โ€–๐‘Š1,๐œ…โ‰ค๐ถโ„Žโ€–๐ฎโ€–๐‘Š2,๐œ…,โˆ€๐ฎโˆˆ๎€บ๐‘Š2,๐œ…๎€ป๐‘‘,(4.26) and a continuous operator ๐œŒโ„Žโˆถ๐‘Š1,๐œ…๎…žโ†’๐‘„โ„Ž that satisfies โ€–โ€–๐‘โˆ’๐œŒโ„Ž(๐‘)โ€–โ€–๐ฟ๐œ…๎…žโ‰ค๐ถโ„Žโ€–๐‘โ€–๐‘Š1,๐œ…๎…ž,โˆ€๐‘โˆˆ๐‘Š1,๐œ…๎…ž,(4.27) where โ„Ž is the size of the higher diameter of the elements of ๐’ฏโ„Ž. Assume that ๐‘‰โ„Ž and ๐‘„โ„Ž satisfy the inf-sup condition (4.1). Let (๐ฎ,๐‘) be the solution of problem (3.8) and let (๐ฎโ„Ž,๐‘โ„Ž) be the solution of problem (4.2). Assume that (๐ฎ,๐‘)โˆˆ([๐‘Š2,๐œ…]๐‘‘,๐‘Š1,๐œ…๎…ž), where ๐œ…โˆˆ[๐‘Ÿ,2], then one has โ€–โ€–๐ฎโˆ’๐ฎโ„Žโ€–โ€–๐‘Š1,๐‘Ÿ+๎€ทโ€–โ€–๐‘โˆ’๐‘โ„Žโ€–โ€–๐ฟ๐œ…๎…ž๎€ธ๐œ…๎…ž/2โ‰ค๐ทโ„Ž๐œ…/2,(4.28) where ๐ท=๐ท(โ€–๐ฎโ€–๐‘Š2,๐œ…,โ€–๐‘โ€–๐‘Š1,๐‘Ÿ๎…ž,(๐ถโ„Ž)โˆ’1)>0.

Proof. Apply (4.23) and (4.24) with ๐ฏโ„Ž=๐œ‹โ„Ž(๐ฎ) and ๐‘žโ„Ž=๐œŒโ„Ž(๐‘). By using the continuity of ๐œ‹โ„Ž, (4.5), (4.26), and (4.27), there exist ๐ถ1,๐ถ2,๐ถ3,๐ถ4>0 such that โ€–โ€–๐ฎโˆ’๐ฎโ„Žโ€–โ€–๐‘Š1,๐‘Ÿโ‰ค๐ถ1๎€บ1+โ€–๐Ÿโ€–๐ฟ๐‘Ÿ๎…ž+โ€–๐ฎโ€–๐‘Š1,๐‘Ÿ๎€ป2โˆ’๐‘Ÿ๎€ทโ„Ž(๐œ…/2)+โ„Ž๎€ธโ‰ค๐ถ2โ„Ž(๐œ…/2),โ€–โ€–๐‘โˆ’๐‘โ„Žโ€–โ€–๐ฟ๐œ…๎…žโ‰ค๐ถ3๎€บ1+โ€–๐Ÿโ€–๐ฟ๐‘Ÿ๎…ž+โ€–๐ฎโ€–๐‘Š1,๐‘Ÿ๎€ป(2โˆ’๐‘Ÿ)/๐œ…๎…ž๎‚†๎€ทโ„Ž(๐œ…/2)+โ„Ž๎€ธ(2/๐œ…๎…ž)+โ„Ž๎‚‡โ‰ค๐ถ4โ„Ž(๐œ…/๐œ…๎…ž).(4.29) The estimate (4.28) directly follows from (4.29).

Remark 4.10. The combination [โ„™1/Bulle]๐‘‘โˆ’โ„™1 for spaces ๐‘‰โ„Ž and ๐‘„โ„Ž, introduced in [23], satisfies the assumptions of Theorem 4.9; see Lemmaโ€‰โ€‰4.20 page 190 of [15] for the inf-sup condition (4.1) and [15, 16] for the interpolation inequalities (4.26) and (4.27).

Remark 4.11. If ฮ“๐‘…โ‰ โˆ…, a similar analysis can be led by replacing the norm defined by (4.6) by๐ฏโŸถโ€–|๐ฏ|โ€–โˆถ=๎„ถ๎„ต๎„ตโŽท๎€œฮฉ||๐œ€(๐ฏ)||2๎€ท1+||๐œ€(๐ฎ)||+||๐œ€(๐ฏ)||๎€ธ2โˆ’๐‘Ÿ๐‘‘๐‘‰+๎„ถ๎„ตโŽท๎€œฮ“๐‘…|๐ฏ|2(1+|๐ฎ|+|๐ฏ|)2โˆ’๐‘Ÿ๐‘‘๐‘†.(4.30)

5. Successive Approximations

In this section, several successive approximation algorithms are proposed for solving the nonlinearity of the discrete problem (4.4) when ๐‘›>1. For the sake of simplicity, we suppose ฮ“๐‘…=โˆ… in this section; see Remark 5.8. We present a unified scheme that contains the classical fixed point method together with Newton's method. The mesh ๐’ฏโ„Ž is fixed, and we assume that the approximation spaces satisfy ๐‘‰โ„ŽโŠ‚๐‘‰โˆฉ[๐‘Š1,โˆž(ฮฉ)]๐‘‘ and ๐‘„โ„ŽโŠ‚๐‘„โˆฉ๐ฟโˆž(ฮฉ). In what follows, โ€–โ‹…โ€– denotes an arbitrary norm of ๐‘‰div,โ„Ž. Since ๐‘‰div,โ„Ž is a finite-dimensional space, all norms are equivalent. Let ๐›พโˆˆ[0,1]. We define ๐ธโˆถ๎‚ป๐‘‰div,โ„ŽโŸถ๐‘‰div,โ„Ž,ฬƒโ€Œ๐ฎโ„ŽโŸถ๎‚๐ฐโ„Ž,(5.1) where ๎‚๐ฐโ„Žโˆˆ๐‘‰div,โ„Ž solves 2๎€œฮฉ๐œ‡๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚๐œ€๎€ท๎‚๐ฐโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๐‘‘๐‘‰+2๐›พ๎€œฮฉ๐œ‡๎…ž๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎€ท๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๎‚๐ฐโ„Žโˆ’ฬƒโ€Œ๐ฎโ„Ž๎€ธ๎€ธ๎€ท๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๎€ธ๐‘‘๐‘‰=๎€œฮฉ๐ โ‹…๐ฏโ„Ž๐‘‘๐‘‰,โˆ€๐ฏโ„Žโˆˆ๐‘‰div,โ„Ž.(5.2)

The application ๐ธ is well defined. Indeed, by using, respectively, ๐œ‡โ€ฒ<0, inequalities (3.3) and (3.2), there exist ๐ถ1,๐ถ2>0 such that 2๎€œฮฉ๐œ‡๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ท๎‚๐ฐโ„Ž๎€ธ||2๐‘‘๐‘‰+2๐›พ๎€œฮฉ๐œ‡๎…ž๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎€ท๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๎‚๐ฐโ„Ž๎€ธ๎€ธ2๐‘‘๐‘‰โ‰ฅ2๎€œฮฉ๐œ‡๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ท๎‚๐ฐโ„Ž๎€ธ||2๐‘‘๐‘‰โˆ’2๐›พ(1โˆ’1/๐‘›)๎€œฮฉ๐œ‡๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ท๎‚๐ฐโ„Ž๎€ธ||2๐‘‘๐‘‰โ‰ฅ2๐ถ1(1โˆ’๐›พ(1โˆ’1/๐‘›))๎€ท1+โ€–โ€–๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโ€–โ€–๐ฟโˆž๎€ธ1โˆ’1/๐‘›๎€œฮฉ||๐œ€๎€ท๎‚๐ฐโ„Ž๎€ธ||2๐‘‘๐‘‰โ‰ฅ๐ถ2โ€–โ€–๎‚๐ฐโ„Žโ€–โ€–2.(5.3) As a consequence, the problem (5.2) is coercive. From the Lax-Milgram Theorem, see [15] page 83, there exists a unique solution ๎‚๐ฐโ„Žโˆˆ๐‘‰div,โ„Ž of (5.2).

In what follows, ๐ฎโ„Ž denotes the solution (4.4), which is also the unique fixed point of ๐ธ. Assume that ๐ฎโ„Ž,0 is given; we define iteratively a sequence ๐ฎโ„Ž,๐‘˜, for all ๐‘˜โ‰ฅ1, by ๐ฎโ„Ž,๐‘˜+1=๐ธ๎€ท๐ฎโ„Ž,๐‘˜๎€ธ.(5.4) Our goal is to prove that ๐ฎโ„Ž,๐‘˜ converges to ๐ฎโ„Ž when ๐‘˜ goes to the infinity. When ๐›พ=0, we obtain the classical fixed point method, widely used to solve the nonlinearity of Glen's law; see [6, 9, 14]. When ๐›พ=1, we have an additional term in (5.2) which corresponds to Newton's method; see Remark 5.5. The case ๐›พโˆˆ(0,1) corresponds to a hybrid fixed pointโ€”Newton's method. The convergence of sequence ๐ฎโ„Ž,๐‘˜ requires several preliminary results. We compute the first derivative of ๐ธ in Lemma 5.1. Lemma 5.2 provides an upper bound of the first derivative. Eventually, Theorem 5.3 states the linear convergence of ๐ฎโ„Ž,๐‘˜ by using the Banach fixed point theorem. Theorem 5.7 states the second-order convergence when ๐›พ=1. By differentiating formally (5.2) at point ฬƒโ€Œ๐ฎโ„Ž in direction ๐ฎโ„Ž, with ๎‚๐ฐโ„Ž=๐ธ(ฬƒโ€Œ๐ฎโ„Ž), we obtain the following lemma.

Lemma 5.1. Let (ฬƒโ€Œ๐ฎโ„Ž,๎‚๐ฐโ„Ž) satisfy ๐ธ(ฬƒโ€Œ๐ฎโ„Ž)=๎‚๐ฐโ„Ž. The application ๐ธ is Gรขteaux differentiable at point ฬƒโ€Œ๐ฎโ„Ž and its derivative is given by ๐ท๐ธ๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโˆถ๎‚ป๐‘‰div,โ„ŽโŸถ๐‘‰div,โ„Ž,๐ฎโ„ŽโŸถ๐ฐโ„Ž,(5.5) where ๐ฐโ„Ž solves 2๎€œฮฉ๐œ‡๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚๐œ€๎€ท๐ฐโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๐‘‘๐‘‰+2๎€œฮฉ๐œ‡๎…ž๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎€ท๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฎโ„Ž๎€ธ๎€ธ๎€ท๐œ€๎€ท๎‚๐ฐโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๎€ธ๐‘‘๐‘‰+๐›พโŽกโŽขโŽขโŽฃ2๎€œฮฉ๐œ‡๎…ž๎…ž๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||โˆ’๐œ‡๎…ž๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||3๎€ท๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฎโ„Ž๎€ธ๎€ธร—๎€ท๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๎‚๐ฐโ„Žโˆ’ฬƒโ€Œ๐ฎโ„Ž๎€ธ๎€ธ๎€ท๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๎€ธ๐‘‘๐‘‰โŽคโŽฅโŽฅโŽฆ+๐›พโŽกโŽขโŽขโŽฃ2๎€œฮฉ๐œ‡๎…ž๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎€ท๐œ€๎€ท๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๎‚๐ฐโ„Žโˆ’ฬƒโ€Œ๐ฎโ„Ž๎€ธ๎€ธ๎€ท๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๎€ธ๐‘‘๐‘‰โŽคโŽฅโŽฅโŽฆ+๐›พโŽกโŽขโŽขโŽฃ2๎€œฮฉ๐œ‡๎…ž๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎€ท๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฐโ„Žโˆ’๐ฎโ„Ž๎€ธ๎€ธ๎€ท๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๎€ธ๐‘‘๐‘‰โŽคโŽฅโŽฅโŽฆ+๐›พโŽกโŽขโŽขโŽฃ2๎€œฮฉ๐œ‡๎…ž๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎€ท๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๎‚๐ฐโ„Žโˆ’ฬƒโ€Œ๐ฎโ„Ž๎€ธ๎€ธ๎€ท๐œ€๎€ท๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๎€ธ๐‘‘๐‘‰โŽคโŽฅโŽฅโŽฆ=0,โˆ€๐ฏโ„Žโˆˆ๐‘‰div,โ„Ž.(5.6)

The problems (5.2) and (5.6) have the same coercivity properties to compute ๐ฐโ„Ž (resp., ๎‚๐ฐโ„Ž) from ๐ฎโ„Ž (resp., ฬƒโ€Œ๐ฎโ„Ž). As a consequence, the problem (5.6) is well-posed by the Lax-Milgram theorem. To prove the convergence of the sequence ๐ฎโ„Ž,๐‘˜, we look for a norm that makes ๐ธ a contraction at point ๐ฎโ„Ž.

Lemma 5.2. Let ๐›พโˆˆ[0,1], and let ๐ฎโ„Ž be the fixed point of ๐ธ. The application ๐ท๐ธ(๐ฎโ„Ž) satisfies โ€–โ€–||๐ท๐ธ๎€ท๐ฎโ„Ž๎€ธ||โ€–โ€–๐œ‡โ‰ค(1โˆ’๐›พ)(1โˆ’1/๐‘›)1โˆ’(1โˆ’1/๐‘›)๐›พ<1,(5.7) where |||โ‹…|||๐œ‡ is the subordinated norm to โ€–โ‹…โ€–๐œ‡โˆถ=๎”โˆซฮฉ๐œ‡(|๐œ€(๐ฎโ„Ž)|)|๐œ€(โ‹…)|2๐‘‘๐‘‰.

Proof. Since ๐ธ(๐ฎโ„Ž)=๐ฎโ„Ž, then (5.6), with ฬƒโ€Œ๐ฎโ„Ž=๐ฎโ„Ž and ๎‚๐ฐ๐ก=๐ฎโ„Ž, is rewriten as ๎€œฮฉ๐œ‡๎‚€||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๎‚๐œ€๎€ท๐ฐโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๐‘‘๐‘‰+(1โˆ’๐›พ)โŽกโŽขโŽขโŽฃ๎€œฮฉ๐œ‡๎…ž๎‚€||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๎€ท๐œ€๎€ท๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฎโ„Ž๎€ธ๎€ธ๎€ท๐œ€๎€ท๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๎€ธ๐‘‘๐‘‰โŽคโŽฅโŽฅโŽฆ+๐›พโŽกโŽขโŽขโŽฃ๎€œฮฉ๐œ‡๎…ž๎‚€||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๎€ท๐œ€๎€ท๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฐโ„Ž๎€ธ๎€ธ๎€ท๐œ€๎€ท๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๎€ธ๐‘‘๐‘‰โŽคโŽฅโŽฅโŽฆ=0,(5.8) for all ๐ฏโ„Žโˆˆ๐‘‰div,โ„Ž. From (5.8), ๐œ‡โ€ฒ<0, and (3.3), we have ๎€œฮฉ๐œ‡๎‚€||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๎‚๐œ€๎€ท๐ฐโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๐‘‘๐‘‰โ‰คโˆ’(1โˆ’๐›พ)๎‚ธ๎€œฮฉ๐œ‡๎…ž๎‚€||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ท๐ฎโ„Ž๎€ธ||||๐œ€๎€ท๐ฎโ„Ž๎€ธ||||๐œ€๎€ท๐ฏโ„Ž๎€ธ||๐‘‘๐‘‰๎‚นโˆ’๐›พ๎‚ธ๎€œฮฉ๐œ‡๎…ž๎‚€||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ท๐ฎโ„Ž๎€ธ||||๐œ€๎€ท๐ฐโ„Ž๎€ธ||||๐œ€๎€ท๐ฏโ„Ž๎€ธ||๐‘‘๐‘‰๎‚นโ‰ค(1โˆ’๐›พ)๎‚€1โˆ’1๐‘›๎‚๎‚ธ๎€œฮฉ๐œ‡๎‚€||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ท๐ฎโ„Ž๎€ธ||||๐œ€๎€ท๐ฏโ„Ž๎€ธ||๐‘‘๐‘‰๎‚น+๐›พ๎‚€1โˆ’1๐‘›๎‚๎‚ธ๎€œฮฉ๐œ‡๎‚€||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ท๐ฐโ„Ž๎€ธ||||๐œ€๎€ท๐ฏโ„Ž๎€ธ||๐‘‘๐‘‰๎‚น.(5.9) By setting ๐ฏโ„Ž=๐ฐโ„Ž in (5.9), we obtain โ€–โ€–๐ฐโ„Žโ€–โ€–2๐œ‡โ‰ค(1โˆ’๐›พ)๎‚€1โˆ’1๐‘›๎‚๎€œฮฉ๐œ‡๎‚€||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ท๐ฎโ„Ž๎€ธ||||๐œ€๎€ท๐ฐโ„Ž๎€ธ||๐‘‘๐‘‰+๐›พ๎‚€1โˆ’1๐‘›๎‚โ€–โ€–๐ฐโ„Žโ€–โ€–2๐œ‡.(5.10) From (5.10) and Cauchy-Schwarz's inequality, we obtain โ€–โ€–๐ฐโ„Žโ€–โ€–2๐œ‡โ‰ค๎‚ธ(1โˆ’๐›พ)(1โˆ’1/๐‘›)1โˆ’(1โˆ’1/๐‘›)๐›พ๎‚นโ€–โ€–๐ฎโ„Žโ€–โ€–๐œ‡โ€–โ€–๐ฐโ„Žโ€–โ€–๐œ‡.(5.11) Eventually, (5.7) follows from the definition of norm |||โ‹…|||๐œ‡.

Theorem 5.3. Let ๐›พโˆˆ[0,1], let ๐’ฏโ„Ž be a given mesh of ฮฉ, and let โ€–โ‹…โ€– be a norm of ๐‘‰div,โ„Ž. There exist ๐›ฟ>0 and ๐ถ>0 such that if โ€–๐ฎโ„Ž,0โˆ’๐ฎโ„Žโ€–<๐›ฟ, then one has โ€–โ€–๐ฎโ„Ž,๐‘˜โˆ’๐ฎโ„Žโ€–โ€–โ‰ค๐ถ๎‚ธ(1โˆ’๐›พ)(1โˆ’1/๐‘›)1โˆ’(1โˆ’1/๐‘›)๐›พ๎‚น๐‘˜โ€–โ€–๐ฎโ„Ž,0โˆ’๐ฎโ„Žโ€–โ€–,(5.12) for all ๐‘˜โ‰ฅ0, and ๐ฎโ„Ž,๐‘˜ is linearly convergent to ๐ฎโ„Ž.

Proof. From Lemma 5.2, the spectral radius of ๐ท๐ธ(๐ฎโ„Ž) is lower than constant: ๎‚ธ(1โˆ’๐›พ)(1โˆ’1/๐‘›)1โˆ’(1โˆ’1/๐‘›)๐›พ๎‚น,(5.13) which is lower than 1. The theorem is then a direct application of the Banach fixed point theorem in ๐‘‰div,โ„Ž.

Remark 5.4. In Theorem 5.3, it should be stressed that ๐›ฟ depends on โ„Ž. When โ„Žโ†’0 (i.e., if we replace ๐ฎโ„Ž by ๐ฎ), we cannot ensure Theorem 5.3 to remain true. Nevertheless, in practise, ๐›ฟ seems to be independent of โ„Ž, see Section 6.

When ๐›พ=1, we have ๐ท๐ธ(๐ฎโ„Ž)=๐ŸŽ from Lemma 5.2. It suggests that the convergence of sequence ๐ฎโ„Ž,๐‘˜ is quadratic. To establish the second-order convergence, we define, for all ๐ฏโ„Žโˆˆ๐‘‰div,โ„Ž, the application โ„ฑ(โ‹…,๐ฏโ„Ž)โˆถ๐‘‰div,โ„Žโ†’โ„ by โ„ฑ๎€ทฬƒโ€Œ๐ฎโ„Ž;๐ฏโ„Ž๎€ธโˆถ=2๎€œฮฉ๐œ‡๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๐‘‘๐‘‰โˆ’๎€œฮฉ๐Ÿโ‹…๐ฏโ„Ž๐‘‘๐‘‰.(5.14)

Let ฬƒโ€Œ๐ฎโ„Ž,๐ฎโ„Ž,๐ฎโ„Žโˆˆ๐‘‰div,โ„Ž. We compute formally the first-order derivative of โ„ฑ at point ฬƒโ€Œ๐ฎโ„Ž in direction ๐ฎโ„Ž: ๎ซ๐ทโ„ฑ๎€ทฬƒโ€Œ๐ฎโ„Ž;๐ฏโ„Ž๎€ธ,๐ฎโ„Ž๎ฌ=2๎€œฮฉ๐œ‡๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚๐œ€๎€ท๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๐‘‘๐‘‰+2๎€œฮฉ๐œ‡๎…ž๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎€ท๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฎโ„Ž๎€ธ๎€ธ๎€ท๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๎€ธ๐‘‘๐‘‰,(5.15) and the second-order derivative of โ„ฑ at point ฬƒโ€Œ๐ฎโ„Ž in direction (๐ฎโ„Ž,๐ฎโ„Ž): โŸจ๐ท2โ„ฑ๎€ทฬƒโ€Œ๐ฎโ„Ž;๐ฏโ„Ž๎€ธ,๐ฎโ„Ž,๐ฎโ„ŽโŸฉ=2๎€œฮฉ๐œ‡๎…ž๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚€๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโˆถ๐œ€๎‚€๐ฎโ„Ž๎‚๎‚๎€ท๐œ€๎€ท๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๎€ธ๐‘‘๐‘‰+2๎€œฮฉ๐œ‡๎…ž๎…ž๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||โˆ’๐œ‡๎…ž๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||3ร—๎‚€๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโˆถ๐œ€๎‚€๐ฎโ„Ž๎‚๎‚๎€ท๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฎโ„Ž๎€ธ๎€ธ๎€ท๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๎€ธ๐‘‘๐‘‰+2๎€œฮฉ๐œ‡๎…ž๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚€๐œ€๎‚€๐ฎโ„Ž๎‚โˆถ๐œ€๎€ท๐ฎโ„Ž๎€ธ๎‚๎€ท๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๎€ธ๐‘‘๐‘‰+2๎€œฮฉ๐œ‡๎…ž๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎€ท๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธโˆถ๐œ€๎€ท๐ฎโ„Ž๎€ธ๎€ธ๎‚€๐œ€๎‚€๐ฎโ„Ž๎‚โˆถ๐œ€๎€ท๐ฏโ„Ž๎€ธ๎‚๐‘‘๐‘‰.(5.16)

Remark 5.5. If ๐›พ=1, we have, from the definition of ๐ธ (5.2), of โ„ฑ (5.14), and of ๐ทโ„ฑ (5.15), ๐ฎโ„Ž,๐‘˜+1=๐ธ๎€ท๐ฎโ„Ž,๐‘˜๎€ธโŸบโ„ฑ๎€ท๐ฎโ„Ž,๐‘˜;๐ฏโ„Ž๎€ธ+๎ซ๐ทโ„ฑ๎€ท๐ฎโ„Ž,๐‘˜;๐ฏโ„Ž๎€ธ,๐ฎโ„Ž,๐‘˜+1โˆ’๐ฎโ„Ž,๐‘˜๎ฌ=0,โˆ€๐ฏโ„Žโˆˆ๐‘‰div,โ„Ž,(5.17) which highlights Newton's method.

Lemma 5.6. The following inequalities hold, for all ฬƒโ€Œ๐ฎโ„Ž,๐ฎโ„Ž,๐ฎโ„Žโˆˆ๐‘‰div,โ„Ž: 2๐‘›๎€œฮฉ๐œ‡๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚||๐œ€๎€ท๐ฎโ„Ž๎€ธ||2๐‘‘๐‘‰โ‰ค๎ซ๐ทโ„ฑ๎€ทฬƒโ€Œ๐ฎโ„Ž;๐ฎโ„Ž๎€ธ,๐ฎโ„Ž๎ฌ,(5.18)โˆ’๎‚ฌ๐ท2โ„ฑ๎€ทฬƒโ€Œ๐ฎโ„Ž;๐ฎโ„Ž๎€ธ,๐ฎโ„Ž,๐ฎโ„Ž๎‚ญโ‰ค๎€œฮฉ๎‚ต8|||๐œ‡๎…ž๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚|||+2|||๐œ‡๎…ž๎…ž๎‚€||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚|||||๐œ€๎€ทฬƒโ€Œ๐ฎโ„Ž๎€ธ||๎‚ถ|||๐œ€๎‚€๐ฎโ„Ž๎‚|||2||๐œ€๎€ท๐ฎโ„Ž๎€ธ||๐‘‘๐‘‰.(5.19)

Proof. Inequality (5.18) follows from (5.15) and (3.3), while inequality (5.19) directly follows from (5.16). Computational details are given in [12].

Theorem 5.7. Suppose ๐›พ=1, let ๐’ฏโ„Ž be a given mesh of ฮฉ, and let โ€–โ‹…โ€– be a norm of ๐‘‰div,โ„Ž. There exist ๐›ฟ>0 and ๐ถ>0 such that if โ€–๐ฎโ„Ž,0โˆ’๐ฎโ„Žโ€–<๐›ฟ, then one has โ€–โ€–๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜+1โ€–โ€–โ‰ค๐ถโ€–โ€–๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜โ€–โ€–2,(5.20) for all ๐‘˜โ‰ฅ0, and ๐ฎโ„Ž,๐‘˜ is quadratically convergent to ๐ฎโ„Ž.

Proof. Owing to Theorem 5.3, there exists ๐›ฟ>0 such that if โ€–๐ฎโ„Ž,0โˆ’๐ฎโ„Žโ€–<๐›ฟ, then โ€–|๐œ€(๐ฎโ„Ž,๐‘˜โˆ’๐ฎโ„Ž)|โ€–๐ฟโˆžโ†’0 when ๐‘˜โ†’โˆž. As a consequence, there exists ๐พ1 such that โ€–|๐œ€(๐ฎโ„Ž,๐‘˜โˆ’๐ฎโ„Ž)|โ€–๐ฟโˆž<๐›ฟ for all ๐‘˜>๐พ1. By writing the Taylor expansion of โ„ฑ at point ๐ฎโ„Ž,๐‘˜, there exists ฬ‚โ€Œ๐ฎโ„Ž,๐‘˜โˆˆ๐‘‰div,โ„Ž such that โ€–โ€–||๐œ€๎€ทฬ‚โ€Œ๐ฎโ„Ž,๐‘˜โˆ’๐ฎโ„Ž,๐‘˜๎€ธ||โ€–โ€–๐ฟโˆž<โ€–โ€–||๐œ€๎€ท๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜๎€ธ||โ€–โ€–๐ฟโˆž<๐›ฟ,(5.21)โ„ฑ๎€ท๐ฎโ„Ž;๐ฏโ„Ž๎€ธ=โ„ฑ๎€ท๐ฎโ„Ž,๐‘˜;๐ฏโ„Ž๎€ธ+๎ซ๐ทโ„ฑ๎€ท๐ฎโ„Ž,๐‘˜;๐ฏโ„Ž๎€ธ,๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜๎ฌ+12๎ซ๐ท2โ„ฑ๎€ทฬ‚โ€Œ๐ฎโ„Ž,๐‘˜;๐ฏโ„Ž๎€ธ,๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜,๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜๎ฌ.(5.22) Since ๐ฎโ„Ž solves (4.4), then โ„ฑ(๐ฎโ„Ž;๐ฏโ„Ž)=0 in (5.22). By setting ๐ฏโ„Ž=๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜+1, we obtain, from (5.22) and (5.17), ๎ซ๐ทโ„ฑ๎€ท๐ฎโ„Ž,๐‘˜;๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜+1๎€ธ,๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜+1๎ฌ=โˆ’12๎ซ๐ท2โ„ฑ๎€ทฬ‚โ€Œ๐ฎโ„Ž,๐‘˜;๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜+1๎€ธ,๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜,๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜๎ฌ.(5.23) Thanks to (3.2), there exists ๐ถ0=๐ท1(1+โ€–๐œ€(๐ฎโ„Ž)โ€–๐ฟโˆž)1/๐‘›โˆ’1 such that 0<๐ถ0โ‰ค๐œ‡(|๐œ€(๐ฎโ„Ž)|). As a consequence, since โ€–|๐œ€(๐ฎโ„Ž,๐‘˜โˆ’๐ฎโ„Ž)|โ€–๐ฟโˆžโ†’0 and โ€–|๐œ€(ฬ‚โ€Œ๐ฎโ„Ž,๐‘˜โˆ’๐ฎ๐ก)|โ€–๐ฟโˆžโ†’0 when ๐‘˜โ†’โˆž and ๐œ‡โˆˆ๐’žโˆž(โ„โˆ—+), there exist ๐ถ1,๐ถ2>0 and ๐พ2โ‰ฅ๐พ1 such that, for all ๐‘˜>๐พ2, ๐ถ1<๐œ‡๎‚€||๐œ€๎€ท๐ฎโ„Ž,๐‘˜๎€ธ||๎‚,(5.24)๎‚ต8|||๐œ‡๎…ž๎‚€||๐œ€๎€ทฬ‚โ€Œ๐ฎโ„Ž,๐‘˜๎€ธ||๎‚|||+2|||๐œ‡๎…ž๎…ž๎‚€||๐œ€๎€ทฬ‚โ€Œ๐ฎโ„Ž,๐‘˜๎€ธ||๎‚|||||๐œ€๎€ทฬ‚โ€Œ๐ฎโ„Ž,๐‘˜๎€ธ||๎‚ถ<๐ถ2.(5.25) By applying (5.18) with ฬƒโ€Œ๐ฎโ„Ž=๐ฎโ„Ž,๐‘˜ and ๐ฎโ„Ž=๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜+1 and (5.24), we obtain ๐ถ1๎€œฮฉ||๐œ€๎€ท๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜+1๎€ธ||2๐‘‘๐‘‰โ‰ค๎ซ๐ทโ„ฑ๎€ท๐ฎโ„Ž,๐‘˜;๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜+1๎€ธ,๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜+1๎ฌ.(5.26) By applying (5.19) with ฬƒโ€Œ๐ฎโ„Ž=ฬ‚โ€Œ๐ฎโ„Ž,๐‘˜, ๐ฎโ„Ž=๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜+1, and ๐ฎโ„Ž=๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜ and (5.25), we obtain: โˆ’๎ซ๐ท2โ„ฑ๎€ทฬ‚โ€Œ๐ฎโ„Ž,๐‘˜;๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜+1๎€ธ,๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜,๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜๎ฌโ‰ค๐ถ2๎€œฮฉ||๐œ€๎€ท๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜๎€ธ||2||๐œ€๎€ท๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜+1๎€ธ||๐‘‘๐‘‰.(5.27) By combining (5.23), (5.26), and (5.27), we obtain ๐ถ1๎€œฮฉ||๐œ€๎€ท๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜+1๎€ธ||2๐‘‘๐‘‰โ‰ค๐ถ2๎€œฮฉ||๐œ€๎€ท๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜๎€ธ||2||๐œ€๎€ท๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜+1๎€ธ||๐‘‘๐‘‰.(5.28) By using Cauchy-Schwarz's inequality and the equivalence of norms, there exists ๐ถ3>0 such that โ€–โ€–||๐œ€๎€ท๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜+1๎€ธ||โ€–โ€–2๐ฟ2โ‰ค๐ถ3โ€–โ€–||๐œ€๎€ท๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜๎€ธ||โ€–โ€–2๐ฟ2โ€–โ€–||๐œ€๎€ท๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜+1๎€ธ||โ€–โ€–๐ฟ2.(5.29) Clearly, (5.20) follows from (5.29).

Remark 5.8. If ฮ“๐‘…โ‰ โˆ…, the nonlinear Robin-Dirichlet condition can be handled in the same way as for the viscosity function. In that case, we modify the application ๐ธ by adding ๎“๐‘–=1,๐‘‘โˆ’1โŽ›โŽœโŽ๎€œฮ“๐‘…๐›ผ๎€ท||ฬƒโ€Œ๐ฎโ„Ž||๎€ธ๎€ท๎‚๐ฐโ„Žโ‹…๐ญ๐‘–๎€ธ๎€ท๐ฏโ„Žโ‹…๐ญ๐‘–๎€ธ๐‘‘๐‘†+๐›พ๎€œฮ“๐‘…๐›ผ๎…ž๎€ท||ฬƒโ€Œ๐ฎโ„Ž||๎€ธ||ฬƒโ€Œ๐ฎโ„Ž||๎€ทฬƒโ€Œ๐ฎโ„Žโ‹…๎€ท๎‚๐ฐโ„Žโˆ’ฬƒโ€Œ๐ฎโ„Ž๎€ธ๎€ธ๎€ทฬƒโ€Œ๐ฎโ„Žโ‹…๐ญ๐‘–๎€ธ๎€ท๐ฏโ„Žโ‹…๐ญ๐‘–๎€ธ๐‘‘๐‘†โŽžโŽŸโŽ (5.30) to the left-hand side of (5.2). Theorems 5.3 and 5.7 can be easily extended to this case.

6. Numerical Results

In this section, numerical experiences are performed in two dimensions (๐‘‘=2) to validate the results of Theorems 4.9, 5.3, and 5.7. An exact solution of the Stokes problem (2.1) in the square ฮฉ=[0,1]2 is considered in the pure Dirichlet case, that is, ๐œ•ฮฉ=ฮ“๐ท. Let ๐ฎ(๐‘ฅ,๐‘ฆ)=โŽ›โŽœโŽœโŽ(๐‘ฅ(1โˆ’๐‘ฅ))๐œƒ+1(๐‘ฆ(1โˆ’๐‘ฆ))๐œƒ(1โˆ’2๐‘ฆ)โˆ’(๐‘ฅ(1โˆ’๐‘ฅ))๐œƒ(๐‘ฆ(1โˆ’๐‘ฆ))๐œƒ+1(1โˆ’2๐‘ฅ)โŽžโŽŸโŽŸโŽ ,๐œƒโˆˆ[1,2],(6.1) be a divergence-free velocity field that vanishes on the boundaries of ฮฉ. Let ๐‘(๐‘ฅ,๐‘ฆ)=๐‘ฅ๐‘ฆโˆ’1/4 be the pressure field such that โˆซฮฉ๐‘๐‘‘๐‘‰=0. The right-hand side term ๐Ÿ is deduced by computing (2.1). The parameters involving in Glen's law are ๐‘›=2, ๐œ0=0.1 bar and ๐ด=0.1barโˆ’2โ€‰โ€‰aโˆ’1. Since ๐‘›=2, the function ๐œ‡ defined by (2.2) is given explicitly, when ๐‘ >0, by ๐œ‡(๐‘ )=๎‚ต๎”๎€ท2๐ด๐œ0๎€ธ2+8โˆš2๐ด๐‘ โˆ’2๐ด๐œ0๎‚ถ๎‚€4โˆš2๐ด๐‘ ๎‚.(6.2) Numerical solutions are obtained after several successive approximations ๐ฎโ„Ž,๐‘˜, as described in Section 5. Each ๐ฎโ„Ž,๐‘˜ corresponds to a unique ๐‘โ„Ž,๐‘˜. The algorithm is initialised by (๐ฎโ„Ž,0,๐‘โ„Ž,0)โˆถ=(๐ŸŽ,0). Each linearised problem is solved by using the finite element open source code Freefem++; see [24]. As spaces ๐‘‰โ„Ž and ๐‘„โ„Ž, we opt for the combination [โ„™1/Bulle]๐‘‘โˆ’โ„™1 that satisfy the inf-sup condition (4.1) and the interpolation properties (4.26) and (4.27); see Remark 4.10. Six Delaunay unstructured regular meshes ๐’ฏโ„Ž of the square ฮฉ=[0,1]2 are generated with various resolutions โ„Ž. Since the Dirichlet condition ๐ฎ=๐ŸŽ is applied on the whole boundary ๐œ•ฮฉ=ฮ“๐ท, a penalisation term is added in the variational formulation to constrain the pressure average to be close to zero. For all norms โ€–โ‹…โ€–, the error between ๐ฎ and ๐ฎโ„Ž,๐‘˜ has two components: โ€–โ€–๐ฎโˆ’๐ฎโ„Ž,๐‘˜โ€–โ€–โ‰คโ€–โ€–๐ฎโˆ’๐ฎโ„Žโ€–โ€–+โ€–โ€–๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜โ€–โ€–,(6.3) where ๐ฎโ„Ž is the exact solution of the nonlinear discrete problem. The convergence of the first component โ€–๐ฎโˆ’๐ฎโ„Žโ€– with respect to โ„Ž is the concern of Theorem 4.9, while the convergence of the second component โ€–๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜โ€– with respect to ๐‘˜ is the concern of Theorems 5.3 and 5.7. Let ๐‘˜ be an integer large enough such that ๐ฎโ„Ž and ๐ฎโ„Ž,๐‘˜ can be confused, that is, such that โ€–๐ฎโ„Žโˆ’๐ฎโ„Ž,๐‘˜โ€–โ‰ชโ€–๐ฎโˆ’๐ฎโ„Žโ€–. To check the convergence of the second component, we compute the following error: ๐ธ๐‘ข๐‘˜=โ€–โ€–โˆ‡๐ฎโ„Ž,๐‘˜โˆ’โˆ‡๐ฎโ„Ž,๐‘˜โ€–โ€–๐ฟ๐‘Ÿโ€–โˆ‡๐ฎโ€–๐ฟ๐‘Ÿ,(6.4) where the norm โ€–โ‹…โ€–๐ฟ๐‘Ÿ is evaluated by using the trapezoidal rule. For a fixed โ„Ž, Theorem 5.3 states the linear convergence of ๐ธ๐‘ข๐‘˜ that depends on constant (5.13) when ๐›พโˆˆ[0,1) and the quadratic convergence when ๐›พ=1. Three values of ๐›พ are considered: ๐›พ=0 to test the fixed point algorithm, ๐›พ=0.5 to test the hybrid method, and ๐›พ=1 to test Newton's method. Figure 1 displays ๐ธ๐‘ข๐‘˜ according to ๐‘˜ for each method: ๐›พโˆˆ{0,0.5,1}, and for two different meshes. The recorded orders of convergence are consistent with Theorem 5.3: Newton's method (๐›พ=1) converges quadratically, the fixed point method and the hybrid method (๐›พ<1) converge linearly, and convergence is faster for bigger ๐›พ and then smaller constant (5.13). Newton's method is especially very efficient: in our example, only 3 iterations are needed against 8 for the fixed point algorithm to obtain the same accuracy of the numerical solution. Figure 1 also shows that the convergence of ๐ธ๐‘ข๐‘˜ with respect to ๐‘˜ is not affected by any mesh refinement, as noticed in [3]. Moreover, the addition of supplementary terms in the Stokes system does not increase significantly the computational time for solving the linear system with a direct method.

The estimate of Theorem 4.9 is now tested by computing the following errors: ๐ธ๐‘ขโ„Ž=โ€–โ€–โˆ‡๐ฎโˆ’โˆ‡๐ฎโ„Ž,๐‘˜โ€–โ€–๐ฟ๐‘Ÿโ€–โˆ‡๐ฎโ€–๐ฟ๐‘Ÿ,๐ธ๐‘โ„Ž=โ€–โ€–๐‘โˆ’๐‘โ„Ž,๐‘˜โ€–โ€–๐ฟ๐œ…๎…žโ€–๐‘โ€–๐ฟ๐œ…๎…ž.(6.5) We can change the regularity of ๐ฎ by changing the parameter ๐œƒ in (6.1) from 2 to 1.34. Indeed, if ๐œƒ=2, then ๐ฎโˆˆ๐’žโˆž(ฮฉ), while if ๐œƒ=1.34, then ๐ฎโˆ‰[๐‘Š2,2(ฮฉ)]2, but ๐ฎโˆˆ[๐‘Š2,๐‘Ÿ(ฮฉ)]2, where ๐‘Ÿ=3/2. In any case ๐‘โˆˆ๐’žโˆž(ฮฉ). Figure 2 displays ๐ธ๐‘ขโ„Ž and ๐ธ๐‘โ„Ž with respect to โ„Ž in both cases ๐œƒ=2 and ๐œƒ=1.34. The estimate (4.28) anticipates ๐ธ๐‘ขโ„Ž=๐’ช(โ„Ž), ๐ธ๐‘โ„Ž=๐’ช(โ„Ž) if ๐œƒ=2, and ๐ธ๐‘ขโ„Ž=๐’ช(โ„Ž3/4), ๐ธ๐‘โ„Ž=๐’ช(โ„Ž1/2) if ๐œƒ=1.34. In both cases, the observed order of convergence for ๐ธ๐‘ขโ„Ž and ๐ธ๐‘โ„Ž is close to one, which is greater or equal to the estimate. It suggests the nonoptimality of estimate (4.28) in the nonregular case, as noticed in [7] for a comparable problem.

7. Conclusions and Perspectives

We have proved the existence and the uniqueness of a weak solution of a nonlinear Stokes problem that describes the motion of glaciers. We have also proved the convergence of the finite element approximation and given a priori error estimates. New successive approximation algorithms have been proposed to solve the system nonlinearity and have been proved to be convergent. When implementing Newton's method, both theoretical and numerical studies have shown the efficiency of this method in comparison with the classical fixed point method.

Two extensions of our work should be investigated in future research. First, a posteriori estimates could be an aspect to be developed in order to implement an adaptive mesh procedure. Second, the presented Stokes model could benefit from recent improvements of the basal sliding description with Coulomb-type laws [10].

Acknowledgments

This work was funded by the Swiss National Science Foundation, Projects nos. 200021-119721 and PBELP2-133349. The authors thank H. Weaver for the English corrections.