Table of Contents Author Guidelines Submit a Manuscript
Anemia
Volume 2012, Article ID 270923, 7 pages
http://dx.doi.org/10.1155/2012/270923
Review Article

Correlation of Oxidative Stress with Serum Trace Element Levels and Antioxidant Enzyme Status in Beta Thalassemia Major Patients: A Review of the Literature

1School of Medicine, Universiti Malaysia Sabah (UMS), Locked Bag 2073, 88999 Kota Kinabalu, Sabah, Malaysia
2Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh

Received 4 January 2012; Accepted 25 February 2012

Academic Editor: Mehran Karimi

Copyright © 2012 Q. Shazia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Beta thalassemia major is an inherited disease resulting from reduction or total lack of beta globin chains. Patients with this disease need repeated blood transfusion for survival. This may cause oxidative stress and tissue injury due to iron overload, altered antioxidant enzymes, and other essential trace element levels. The aim of this review is to scrutinize the relationship between oxidative stress and serum trace elements, degree of damage caused by oxidative stress, and the role of antioxidant enzymes in beta thalassemia major patients. The findings indicate that oxidative stress in patients with beta thalassemia major is mainly caused by tissue injury due to over production of free radical by secondary iron overload, alteration in serum trace elements and antioxidant enzymes level. The role of trace elements like selenium, copper, iron, and zinc in beta thalassemia major patients reveals a significant change of these trace elements. Studies published on the status of antioxidant enzymes like catalase, superoxide dismutase, glutathione, and glutathione S-transferase in beta thalassemia patients also showed variable results. The administration of selective antioxidants along with essential trace elements and minerals to reduce the extent of oxidative damage and related complications in beta thalassemia major still need further evaluation.