Table of Contents
Advances in Optics
Volume 2014 (2014), Article ID 395836, 7 pages
http://dx.doi.org/10.1155/2014/395836
Research Article

Field Squeezing in a Quantum-Dot Molecule Jaynes-Cummings Model

1School of Mathematics and Physics, Jiangsu University of Science and Technology, Jiangsu 212003, China
2Department of Physics and Electronic Engineering, Xinjiang Normal University, Xinjiang 830054, China
3Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26505, USA

Received 9 April 2014; Accepted 12 June 2014; Published 3 July 2014

Academic Editor: Kim Fook Lee

Copyright © 2014 Xu Chu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, and A. E. Wetsel, “Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure,” Physical Review Letters, vol. 60, no. 6, pp. 535–537, 1988. View at Publisher · View at Google Scholar · View at Scopus
  2. E. A. Stinaff, M. Scheibner, A. S. Bracker et al., “Optical signatures of coupled quantum dots,” Science, vol. 311, no. 5761, pp. 636–639, 2006. View at Google Scholar
  3. J. R. Kukliński and J. L. Madajczyk, “Strong squeezing in the Jaynes-Cummings model,” Physical Review A, vol. 37, pp. 3175–3178, 1988. View at Publisher · View at Google Scholar
  4. B. Rodríguez-Lara, H. Moya-Cessa, and A. B. Klimov, “Combining Jaynes-Cummings and anti-Jaynes-Cummings dynamics in a trapped-ion system driven by a laser,” Physical Review A, vol. 71, no. 2, Article ID 023811, 2005. View at Publisher · View at Google Scholar
  5. A. Kundu, “Quantum integrable multi-atom models that describe the interaction between radiation and matter with and without the rotating-wave approximation,” Theoretical and Mathematical Physics, vol. 144, no. 1, pp. 975–984, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  6. V. Hussin and L. M. Nieto, “Ladder operators and coherent states for the Jaynes-Cummings model in the rotating-wave approximation,” Journal of Mathematical Physics, vol. 46, no. 12, Article ID 122102, 21 pages, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  7. E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proceedings of the IEEE, vol. 51, no. 1, pp. 89–109, 1963. View at Google Scholar
  8. B. W. Shore and P. L. Knight, “The Jaynes-Cummings model,” Journal of Modern Optics, vol. 40, no. 7, pp. 1195–1238, 1993. View at Publisher · View at Google Scholar · View at MathSciNet
  9. D. F. Walls, “Squeezed states of light,” Nature, vol. 306, no. 5939, pp. 141–146, 1983. View at Publisher · View at Google Scholar · View at Scopus
  10. C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle,” Reviews of Modern Physics, vol. 52, no. 2, pp. 341–392, 1980. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Physical Review Letters, vol. 110, no. 18, Article ID 181101, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge, UK, 1997.
  13. A. D. O'Connell, M. Hofheinz, M. Ansmann et al., “Quantum ground state and single-phonon control of a mechanical resonator,” Nature, vol. 464, no. 7289, pp. 697–703, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Yang, S. L. Zhang, X. B. Zou, S. W. Bi, and X. L. Lin, “Improving noiseless linear amplification for optical quantum communication with quadrature squeezing,” Physical Review A, vol. 87, Article ID 024302, 2013. View at Publisher · View at Google Scholar
  15. A. A. Clerk, F. Marquardt, and K. Jacobs, “Back-action evasion and squeezing of a mechanical resonator using a cavity detector,” New Journal of Physics, vol. 10, Article ID 095010, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, “Coherent control of tunneling in a quantum dot molecule,” Physical Review B, vol. 69, Article ID 125342, 2004. View at Publisher · View at Google Scholar
  17. C.-R. Du and K.-D. Zhu, “Phonon effect on two coupled quantum dots at finite temperature,” Physics Letters A, vol. 372, no. 4, pp. 537–540, 2008. View at Google Scholar
  18. L. Fedichkin and A. Fedorov, “Error rate of a charge qubit coupled to an acoustic phonon reservoir,” Physical Review A, vol. 69, no. 3, Article ID 032311, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Wu, K. Zhu, X. Yuan, Y. Jiang, and M. Yao, “Phonon effect on an optically driven quantum dots device,” Physics Letters A, vol. 347, no. 4–6, pp. 251–254, 2005. View at Publisher · View at Google Scholar
  20. K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centres,” Proceedings of the Royal Society of London A, vol. 204, pp. 406–423, 1950. View at Publisher · View at Google Scholar
  21. P. Meystre, E. Geneux, A. Quattropani, and A. Faist, “Long-time behaviour of a two-level system in interaction with an electromagnetic field,” Il Nuovo Cimento B, vol. 25, no. 2, pp. 521–537, 1975. View at Publisher · View at Google Scholar · View at Scopus
  22. T. von Foerster, “A comparison of quantum and semi-classical theories of the interaction between a two-level atom and the radiation field,” Journal of Physics A: Mathematical and General, vol. 8, p. 95, 1975. View at Publisher · View at Google Scholar
  23. H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, and H. Ando, “Exciton rabi oscillation in a single quantum dot,” Physical Review Letters, vol. 87, no. 24, Article ID 246401, 2001. View at Google Scholar · View at Scopus
  24. N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, and D. G. Steel, “Coherent optical control of the quantum state of a single quantum dot,” Science, vol. 282, no. 5393, pp. 1473–1476, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Piermarocchi and L. J. Sham, “Control of exciton dynamics in nanodots for quantum operations,” Physical Review Letters, vol. 87, no. 6, Article ID 067401, 2001. View at Publisher · View at Google Scholar
  26. T. Calarco, A. Datta, P. Fedichey, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence,” Physical Review A, vol. 68, no. 1, Article ID 012310, 2003. View at Google Scholar · View at Scopus
  27. A. Tackeuchi, T. Kuroda, K. Mase, Y. Nakata, and N. Yokoyama, “Dynamics of carrier tunneling between vertically aligned double quantum dots,” Physical Review B, vol. 62, no. 3, pp. 1568–1571, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Emary and L. J. Sham, “Optically controlled logic gates for two spin qubits in vertically coupled quantum dots,” Physical Review B, vol. 75, Article ID 125317, 2007. View at Publisher · View at Google Scholar