Table of Contents
Advances in Optics
Volume 2014 (2014), Article ID 687207, 7 pages
http://dx.doi.org/10.1155/2014/687207
Research Article

Preparation and Optical Investigations of [()TiO3]-[2SiO2B2O3]-[CeO2] Glasses

Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, India

Received 24 May 2014; Revised 19 September 2014; Accepted 19 September 2014; Published 30 September 2014

Academic Editor: Jesus Corres

Copyright © 2014 Chandkiram Gautam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Yamane and Y. Asahara, Glasses for Photonics, Cambridgve Uniersity Press, Cambridge, UK, 2000.
  2. S. Murugavel and B. Roling, “Ion transport mechanism in borate glasses: influence of network structure on non-Arrhenius conductivity,” Physical Review B: Condensed Matter and Materials Physics, vol. 76, no. 18, Article ID 180202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Abou Shama and F. H. El-Batal, “Structural analysis of glassy lead borate containing MoO3 in relation to its optical properties,” Egyptian Journal of Solids, vol. 29, pp. 49–67, 2006. View at Google Scholar
  4. E. I. Kamitsos and M. A. Karakassides, “Infrared studies of borate glasses,” Physics and Chemistry of Glasses, vol. 30, no. 1, pp. 19–26, 1989. View at Google Scholar
  5. S. G. Motke, S. P. Yawale, and S. S. Yawale, “Infrared spectra of zinc doped lead borate glasses,” Bulletin of Materials Science, vol. 25, no. 1, pp. 75–78, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. V. Rajendran, N. Palanivelu, H. A. El-Batal, F. A. Khalifa, and N. A. Shaft, “Effect of Al2O3 addition on the acoustical properties of lithium borate glasses,” Acoustics Letters, vol. 23, no. 6, pp. 113–121, 1999. View at Google Scholar · View at Scopus
  7. H. Hirashima, D. Arai, and T. Yoshida, “Electrical conductivity of PbO-P2O5V2O5 glasses,” Journal of the American Ceramic Society, vol. 68, no. 9, pp. 486–489, 1985. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Khanna, S. S. Bhatti, K. J. Singh, and K. S. Thind, “Gamma-ray attenuation coefficients in some heavy metal oxide borate glasses at 662 keV,” Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms, vol. 114, no. 3-4, pp. 217–220, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Singh, H. Singh, V. Sharma et al., “Gamma-ray attenuation coefficients in bismuth borate glasses,” Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, vol. 194, no. 1, pp. 1–6, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Khanna, A. Saini, B. Chen, F. González, and B. Ortiz, “Structural characterization of PbO–B2O3–SiO2 glasses,” Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B, vol. 55, no. 2, pp. 65–73, 2014. View at Google Scholar
  11. S. Hsu, Separation Sciences Research and Product Development, Mallinckrodt Baker division and Mallinckrodt.
  12. W. N. Lawless, “Three application areas for strontium titanate glass-ceramics,” Ferroelectrics, vol. 3, no. 1, pp. 287–293, 1972. View at Publisher · View at Google Scholar
  13. B. Schrader, Infrared and Raman Spectroscopy, John Wiley & Sons, London, UK, 1995.
  14. J. R. Ferraro and J. S. Jiomek, Introductory Group Theory and Its Applications to Molecular Structure, Plenum Press, New York, NY, USA, 1969.
  15. D. L. Rouseau, R. P. Bauman, and S. P. S. Porto, “Normal mode determination in crystals,” Journal of Raman Spectroscopy, vol. 10, pp. 253–290, 1981. View at Publisher · View at Google Scholar
  16. C. R. Gautam, D. Kumar, and O. Parkash, “IR study of Pb-Sr titanate borosilicate glasses,” Bulletin of Materials Science, vol. 33, no. 2, pp. 145–148, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. C. R. Gautam and A. K. Yadav, “Synthesis and optical investigations on (Ba,Sr)TiO3 borosilicate glasses doped with La2O3,” Optics and Photonics Journal, vol. 3, no. 4, pp. 1–7, 2013. View at Google Scholar
  18. C. R. Gautam, A. K. Yadav, V. K. Mishra, and K. Vikram, “Synthesis, IR and Raman spectroscopic studies of (Ba,Sr)TiO3 borosilicate glasses with addition of La2O3,” Open Journal of Inorganic Non-Metallic Materials, vol. 2, pp. 47–54, 2012. View at Publisher · View at Google Scholar
  19. C. R. Gautam, A. K. Yadav, and A. K. Singh, “A review on infrared spectroscopy of borate glasses with effects of different additives,” ISRN Ceramics, vol. 2012, Article ID 428497, 17 pages, 2012. View at Publisher · View at Google Scholar
  20. C. R. Gautam, A. K. Singh, and A. K. Yadav, “Synthesis and optical characterization of ( Pb, Bi)TiO3 borosilicate glass system,” International Journal of Applied Natural Sciences, vol. 1, no. 1, pp. 69–74, 2012. View at Google Scholar
  21. A. M. Efimov, “Quantitative IR spectroscopy: applications to studying glass structure and properties,” Journal of Non-Crystalline Solids, vol. 203, pp. 1–11, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Venkataraman, V. A. Hiremath, S. K. Date, and S. D. Kulkarni, “A new combustion route to γ-Fe2O3 synthesis,” Bulletin of Materials Science, vol. 24, no. 6, pp. 617–621, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Rajendran, N. Palanivelu, D. K. Modak, and B. K. Chaudhuri, “Ultrasonic investigation on ferroelectric BaTiO3 doped 80V,” Physica Status Solidi A, vol. 80, pp. 467–477, 2000. View at Google Scholar
  24. S. Y. Marzouk and M. S. Gaafar, “Ultrasonic study on some borosilicate glasses doped with different transition metal oxides,” Solid State Communications, vol. 144, no. 10-11, pp. 478–483, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Soppe, C. van der Marel, W. F. van Gunsteren, and H. W. den Hartog, “New insights into the structure of B2O3 glass,” Journal of Non-Crystalline Solids, vol. 103, no. 2-3, pp. 201–209, 1988. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Vasantharani and M. Vijayalakshmi, “Acoustic properties of lead-vanadate glass system,” International Journal of Research in Pure and Applied Physics, vol. 1, no. 2, pp. 11–14, 2011. View at Google Scholar
  27. J. E. Shelby, Density and Molar Volume, Introduction to Glass Science and Technology, The Royal Society of Chemistry, London, UK, 1997.
  28. R. V. Adams and R. W. Douglas, “Infra-red studies on various samples of fused silica with special reference to the bands due to water,” Journal of the Society of Glass Technology, vol. 43, pp. 147–158, 1959. View at Google Scholar
  29. H. Dunken and R. H. Doremus, “Short time reactions of a Na2O-CaO-SiO2 glass with water and salt solutions,” Journal of Non-Crystalline Solids, vol. 92, no. 1, pp. 61–72, 1987. View at Publisher · View at Google Scholar · View at Scopus
  30. R. D. Husung and R. H. Doremus, “Infrared transmission spectra of four silicate glasses before and after exposure to water,” Journal of Materials Research, vol. 5, no. 10, pp. 2209–2217, 1990. View at Publisher · View at Google Scholar · View at Scopus
  31. N. A. Ghoneim, H. A. El Batal, N. Abdel Shafi, and M. H. Azooz, “Synthesis and characterization of cadmium doped lead-borate glasses,” in Proceeding of the Egyptian Conference of Chemistry, p. 162, 1996.
  32. F. M. E. Eldin, N. A. E. L. Alaily, F. A. Khalifa, and H. A. E. L. Batal, “Fundamental of glass science and technology,” in Proceedings of the 3rd European Society of Glass Science and Technology Conference (ESG '95), Würzburg, Germany, 1995.
  33. A. S. Tenney and J. Wong, “Vibrational spectra of vapor-deposited binary borosilicate glasses,” The Journal of Chemical Physics, vol. 56, no. 11, pp. 5516–5523, 1972. View at Publisher · View at Google Scholar · View at Scopus
  34. B. N. Meera and J. Ramakrishna, “Raman spectral studies of borate glasses,” Journal of Non-Crystalline Solids, vol. 159, no. 1-2, pp. 1–21, 1993. View at Publisher · View at Google Scholar · View at Scopus
  35. W. Kern and R. C. Heim, “Chemical vapor deposition of silicate glasses for use with silicon devices: II. Film Properties,” Journal of Electrochemical Society, vol. 117, no. 4, pp. 568–573, 1970. View at Publisher · View at Google Scholar